Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Radiology ; 285(3): 839-849, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28873047

RESUMO

Purpose To evaluate the speciation of gadolinium-containing species after multiple administrations of the gadolinium-based contrast agents (GBCAs) gadodiamide and gadoteridol and to quantify the amount of intact gadolinium complexes and insoluble gadolinium-containing species. Materials and Methods A total dose of 13.2 mmol per kilogram of body weight of each GBCA was administered in healthy Wistar rats over a period of 8 weeks. Three days after the final administration, rats were sacrificed, and the brains were excised and divided into three portions. Each portion of brain homogenate was divided into two parts, one for determination of the total gadolinium concentration with inductively coupled plasma mass spectrometry and one for determination of the amount of intact GBCA and gadolinium-containing insoluble species. Relaxometric measurements of gadodiamide and gadolinium trichloride in the presence of polysialic acid were also performed. Results The mean total gadolinium concentrations for gadodiamide and gadoteridol, respectively, were 0.317 µg/g ± 0.060 (standard deviation) and 0.048 µg/g ± 0.004 in the cortex, 0.418 µg/g ± 0.078 and 0.051 µg/g ± 0.009 in the subcortical brain, and 0.781 µg/g ± 0.079 and 0.061 µg/g ± 0.012 in the cerebellum. Gadoteridol comprised 100% of the gadolinium species found in rats treated with gadoteridol. In rats treated with gadodiamide, the largest part of gadolinium retained in brain tissue was insoluble species. In the cerebellum, the amount of intact gadodiamide accounts for 18.2% ± 10.6 of the total gadolinium found therein. The mass balance found for gadolinium implies the occurrence of other soluble gadolinium-containing species (approximately 30%). The relaxivity of the gadolinium polysialic acid species formed in vitro was 97.8 mM/sec at 1.5 T and 298 K. Conclusion Gadoteridol was far less retained, and the entire detected gadolinium was intact soluble GBCA, while gadodiamide yielded both soluble and insoluble gadolinium-containing species, with insoluble species dominating. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Encéfalo/metabolismo , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Gadolínio/administração & dosagem , Gadolínio/farmacocinética , Espectrofotometria Atômica/métodos , Animais , Química Encefálica , Meios de Contraste/química , Esquema de Medicação , Gadolínio/química , Masculino , Taxa de Depuração Metabólica , Especificidade de Órgãos/fisiologia , Ratos , Ratos Wistar , Solubilidade , Distribuição Tecidual
2.
NMR Biomed ; 29(4): 475-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26866929

RESUMO

Herein, a new relaxometric method for the assessment of intestinal permeability based on the oral administration of clinically approved gadolinium (Gd)-based MRI contrast agents (CAs) is proposed. The fast, easily performed and cheap measurement of the longitudinal water proton relaxation rate (R1) in urine reports the amount of paramagnetic probe that has escaped the gastrointestinal tract. The proposed method appears to be a compelling alternative to the available methods for the assessment of intestinal permeability. The method was tested on the murine model of dextran sulfate sodium (DSS)-induced colitis in comparison with healthy mice. Three CAs were tested, namely ProHance®, MultiHance® and Magnevist®. Urine was collected for 24 h after the oral ingestion of the Gd-containing CA at day 3-4 (severe damage stage) and day 8-9 (recovery stage) after treatment with DSS. The Gd content in urine measured by (1)H relaxometry was confirmed by inductively coupled plasma-mass spectrometry (ICP-MS). The extent of urinary excretion was given as a percentage of excreted Gd over the total ingested dose. The method was validated by comparing the results obtained with the established methodology based on the lactulose/mannitol and sucralose tests. For ProHance and Magnevist, the excreted amounts in the severe stage of damage were 2.5-3 times higher than in control mice. At the recovery stage, no significant differences were observed with respect to healthy mice. Overall, a very good correlation with the lactulose/mannitol and sucralose results was obtained. In the case of MultiHance, the percentage of excreted Gd complex was not significantly different from that of control mice in either the severe or recovery stages. The difference from ProHance and Magnevist was explained on the basis of the (known) partial biliary excretion of MultiHance in mice.


Assuntos
Meios de Contraste/administração & dosagem , Gadolínio/administração & dosagem , Intestinos/patologia , Imageamento por Ressonância Magnética/métodos , Administração Oral , Animais , Colite/patologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Permeabilidade , Reprodutibilidade dos Testes
3.
Invest Radiol ; 51(3): 155-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26460826

RESUMO

OBJECTIVES: The aim of this study was to evaluate 4 nonionic x-ray iodinated contrast agents (CAs), commonly used in radiographic procedures, as novel chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) agents by assessing their in vitro exchange properties and preliminary in vivo use as tumor enhancing agents. MATERIALS AND METHODS: The CEST properties, as function of pH (range, 5.5-7.9) and of radio frequency conditions (irradiation field strength range of 1-9 µT and time of 1-9 seconds), have been determined at 7 T and 310 K for 4 x-ray CAs commonly used in clinical settings, namely, iomeprol, iohexol, ioversol, and iodixanol. Their in vivo properties have been investigated upon intravenous injection in a murine HER2+ breast tumor model (n = 4 mice for each CA) using both computed tomography (CT) and MRI modalities. RESULTS: The prototropic exchange rates measured for the 4 investigated iodinated molecules showed strong pH dependence with base catalyzed exchange rate that was faster for monomeric compounds (20-4000 Hz in the pH range of 5.5-7.9). Computed tomography quantification showed marked (up to 2 mg I/mL concentration) and prolonged accumulation (up to 30 minutes postinjection) inside tumor regions. Among the 4 agents we tested, iohexol and ioversol display good CEST contrast properties at 7 T, and in vivo results confirmed strong and prolonged contrast enhancement of the tumors, with elevated extravasation fractions (74%-91%). A strong and significant correlation was found between CT and CEST-MRI tumor-enhanced images (R = 0.70, P < 0.01). CONCLUSIONS: The obtained results demonstrate that iohexol and ioversol, 2 commonly used radiographic compounds, can be used as MRI perfusion agents, particularly useful when serial images acquisitions are needed to complement CT information.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética , Neoplasias Mamárias Experimentais/diagnóstico , Tomografia Computadorizada por Raios X , Animais , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Iohexol/química , Iopamidol/análogos & derivados , Iopamidol/química , Camundongos , Ácidos Tri-Iodobenzoicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA