Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Environ Int ; 180: 108210, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37778289

RESUMO

The SARS-CoV-2 pandemic had huge impacts on global urban populations, activity and health, yet little is known about attendant consequences for urban river ecosystems. We detected significant changes in occurrence and risks from contaminants of emerging concern (CECs) in waterways across Greater London (UK) during the pandemic. We were able to rapidly identify and monitor large numbers of CECs in n = 390 samples across 2019-2021 using novel direct-injection liquid chromatography-mass spectrometry methods for scalable targeted analysis, suspect screening and prioritisation of CEC risks. A total of 10,029 measured environmental concentrations (MECs) were obtained for 66 unique CECs. Pharmaceutical MECs decreased during lockdown in 2020 in the R. Thames (p ≤ 0.001), but then increased significantly in 2021 (p ≤ 0.01). For the tributary rivers, the R. Lee, Beverley Brook, R. Wandle and R. Hogsmill were the most impacted, primarily via wastewater treatment plant effluent and combined sewer overflows. In the R. Hogsmill in particular, pharmaceutical MEC trends were generally correlated with NHS prescription statistics, likely reflecting limited wastewater dilution. Suspect screening of âˆ¼ 1,200 compounds tentatively identified 25 additional CECs at the five most impacted sites, including metabolites such as O-desmethylvenlafaxine, an EU Watch List compound. Lastly, risk quotients (RQs) ≥ 0.1 were calculated for 21 compounds across the whole Greater London freshwater catchment, of which seven were of medium risk (RQ ≥ 1.0) and three were in the high-risk category (RQ ≥ 10), including imidacloprid (RQ = 19.6), azithromycin (15.7) and diclofenac (10.5). This is the largest spatiotemporal dataset of its kind for any major capital city globally and the first for Greater London, representing âˆ¼ 16 % of the population of England, and delivering a foundational One-Health case study in the third largest city in Europe across a global pandemic.


Assuntos
COVID-19 , Saúde Única , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , SARS-CoV-2 , Poluentes Químicos da Água/análise , Ecossistema , Londres/epidemiologia , Pandemias , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Preparações Farmacêuticas
2.
Molecules ; 28(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630246

RESUMO

Endocrine-disrupting compounds (EDCs) constitute a wide variety of chemistries with diverse properties that may/can pose risks to both humans and the environment. Herein, a total of 26 compounds, including steroids, flame retardants, and plasticizers, were monitored in three major and heavily urbanized river catchments: the R. Liffey (Ireland), the R. Thames (UK), and the R. Ter (Spain), by using a single solid-phase extraction liquid chromatography-mass spectrometry (SPE-LC-MS/MS) method. Occurrence and frequency rates were investigated across all locations over a 10-week period, with the highest concentration obtained for the flame retardant tris(2-chloroethyl) phosphate (TCEP) at 4767 ng∙L-1 in the R. Thames in Central London. Geographical variations were observed between sites and were partially explained using principal component analysis (PCA) and hierarchical cluster analysis (HCA). In particular, discrimination between the R. Ter and the R. Thames was observed based on the presence and concentration of flame retardants, benzotriazole, and steroids. Environmental risk assessment (ERA) across sites showed that caffeine, a chemical marker, and bisphenol A (BPA), a plasticizer, were classified as high-risk for the R. Liffey and R. Thames, based on relative risk quotients (rRQs), and that caffeine was classified as high-risk for the R. Ter, based on RQs. The total risks at each location, namely ΣRQriver, and ΣrRQriver, were: 361, 455, and 723 for the rivers Liffey, Thames, and Ter, respectively. Caffeine, as expected, was ubiquitous in all 3 urban areas, though with the highest RQ observed in the R. Ter. High contributions of BPA were also observed across the three matrices. Therefore, these two compounds should be prioritized independently of location. This study represents a comprehensive EDC monitoring comparison between different European cities based on a single analytical method, which allowed for a geographically independent ERA prioritization to be performed.


Assuntos
Disruptores Endócrinos , Retardadores de Chama , Humanos , Irlanda , Espanha , Cafeína , Cromatografia Líquida , Rios , Espectrometria de Massas em Tandem , Medição de Risco , Plastificantes , Reino Unido
3.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576902

RESUMO

The rapid source identification and environmental risk assessment (ERA) of hundreds of chemicals of emerging concern (CECs) in river water represent a significant analytical challenge. Herein, a potential solution involving a rapid direct-injection liquid chromatography-tandem mass spectrometry method for the quantitative determination of 102 CECs (151 qualitatively) in river water is presented and applied across six rivers in Germany and Switzerland at high spatial resolution. The method required an injection volume of only 10 µL of filtered sample, with a runtime of 5.5 min including re-equilibration with >10 datapoints per peak per transition (mostly 2 per compound), and 36 stable isotope-labelled standards. Performance was excellent from the low ng/L to µg/L concentration level, with 260 injections possible in any 24 h period. The method was applied in three separate campaigns focusing on the ERA of rivers impacted by wastewater effluent discharges (1 urban area in the Basel city region with 4 rivers, as well as 1 semi-rural and 1 rural area, each focusing on 1 river). Between 25 and 40 compounds were quantified directly in each campaign, and in all cases small tributary rivers showed higher CEC concentrations (e.g., up to ~4000 ng/L in total in the R. Schwarzach, Bavaria, Germany). The source of selected CECs could also be identified and differentiated from other sources at pre- and post- wastewater treatment plant effluent discharge points, as well as the effect of dilution downstream, which occurred over very short distances in all cases. Lastly, ERA for 41 CECs was performed at specific impacted sites, with risk quotients (RQs) at 1 or more sites estimated as high risk (RQ > 10) for 1 pharmaceutical (diclofenac), medium risk (RQ of 1-10) for 3 CECs (carbamazepine, venlafaxine, and sulfamethoxazole), and low risk (RQ = 0.1-1.0) for 7 CECs (i.e., RQ > 0.1 for 11 CECs in total). The application of high-throughput methods like this could enable a better understanding of the risks of CECs, especially in low flow/volume tributary rivers at scale and with high resolution.


Assuntos
Cromatografia Líquida , Rios , Espectrometria de Massas em Tandem , Águas Residuárias , Cidades , Monitoramento Ambiental , Medição de Risco
4.
Addiction ; 115(1): 109-120, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642141

RESUMO

BACKGROUND AND AIMS: Wastewater-based epidemiology is an additional indicator of drug use that is gaining reliability to complement the current established panel of indicators. The aims of this study were to: (i) assess spatial and temporal trends of population-normalized mass loads of benzoylecgonine, amphetamine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in raw wastewater over 7 years (2011-17); (ii) address overall drug use by estimating the average number of combined doses consumed per day in each city; and (iii) compare these with existing prevalence and seizure data. DESIGN: Analysis of daily raw wastewater composite samples collected over 1 week per year from 2011 to 2017. SETTING AND PARTICIPANTS: Catchment areas of 143 wastewater treatment plants in 120 cities in 37 countries. MEASUREMENTS: Parent substances (amphetamine, methamphetamine and MDMA) and the metabolites of cocaine (benzoylecgonine) and of Δ9 -tetrahydrocannabinol (11-nor-9-carboxy-Δ9 -tetrahydrocannabinol) were measured in wastewater using liquid chromatography-tandem mass spectrometry. Daily mass loads (mg/day) were normalized to catchment population (mg/1000 people/day) and converted to the number of combined doses consumed per day. Spatial differences were assessed world-wide, and temporal trends were discerned at European level by comparing 2011-13 drug loads versus 2014-17 loads. FINDINGS: Benzoylecgonine was the stimulant metabolite detected at higher loads in southern and western Europe, and amphetamine, MDMA and methamphetamine in East and North-Central Europe. In other continents, methamphetamine showed the highest levels in the United States and Australia and benzoylecgonine in South America. During the reporting period, benzoylecgonine loads increased in general across Europe, amphetamine and methamphetamine levels fluctuated and MDMA underwent an intermittent upsurge. CONCLUSIONS: The analysis of wastewater to quantify drug loads provides near real-time drug use estimates that globally correspond to prevalence and seizure data.


Assuntos
Monitoramento Ambiental/métodos , Drogas Ilícitas , Análise Espaço-Temporal , Detecção do Abuso de Substâncias/métodos , Águas Residuárias/química , Anfetamina/análise , Cromatografia Líquida , Cocaína/análogos & derivados , Cocaína/análise , Humanos , Internacionalidade , Metanfetamina/análise , N-Metil-3,4-Metilenodioxianfetamina/análise , Espectrometria de Massas em Tandem
5.
Sci Total Environ ; 565: 977-983, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27188267

RESUMO

Quantitative measurement of drug consumption biomarkers in wastewater can provide objective information on community drug use patterns and trends. This study presents the measurement of alcohol consumption in 20 cities across 11 countries through the use of wastewater-based epidemiology (WBE), and reports the application of these data for the risk assessment of alcohol on a population scale using the margin of exposure (MOE) approach. Raw 24-h composite wastewater samples were collected over a one-week period from 20 cities following a common protocol. For each sample a specific and stable alcohol consumption biomarker, ethyl sulfate (EtS) was determined by liquid chromatography coupled to tandem mass spectrometry. The EtS concentrations were used for estimation of per capita alcohol consumption in each city, which was further compared with international reports and applied for risk assessment by MOE. The average per capita consumption in 20 cities ranged between 6.4 and 44.3L/day/1000 inhabitants. An increase in alcohol consumption during the weekend occurred in all cities, however the level of this increase was found to differ. In contrast to conventional data (sales statistics and interviews), WBE revealed geographical differences in the level and pattern of actual alcohol consumption at an inter-city level. All the sampled cities were in the "high risk" category (MOE<10) and the average MOE for the whole population studied was 2.5. These results allowed direct comparisons of alcohol consumption levels, patterns and risks among the cities. This study shows that WBE can provide timely and complementary information on alcohol use and alcohol associated risks in terms of exposure at the community level.


Assuntos
Consumo de Bebidas Alcoólicas , Medição de Risco/métodos , Águas Residuárias/análise , Austrália , Canadá , Cidades , Europa (Continente)
6.
Talanta ; 147: 261-70, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26592605

RESUMO

For the first time, the performance of a generalised artificial neural network (ANN) approach for the prediction of 2492 chromatographic retention times (tR) is presented for a total of 1117 chemically diverse compounds present in a range of complex matrices and across 10 gradient reversed-phase liquid chromatography-(high resolution) mass spectrometry methods. Probabilistic, generalised regression, radial basis function as well as 2- and 3-layer multilayer perceptron-type neural networks were investigated to determine the most robust and accurate model for this purpose. Multi-layer perceptrons most frequently yielded the best correlations in 8 out of 10 methods. Averaged correlations of predicted versus measured tR across all methods were R(2)=0.918, 0.924 and 0.898 for the training, verification and test sets respectively. Predictions of blind test compounds (n=8-84 cases) resulted in an average absolute accuracy of 1.02±0.54min for all methods. Within this variation, absolute accuracy was observed to marginally improve for shorter runtimes, but was found to be relatively consistent with respect to analyte retention ranges (~5%). Finally, optimised and replicated network dependency on molecular descriptor data is presented and critically discussed across all methods. Overall, ANNs were considered especially suitable for suspects screening applications and could potentially be utilised in bracketed-type analyses in combination with high resolution mass spectrometry.


Assuntos
Cromatografia de Fase Reversa/métodos , Redes Neurais de Computação , Espectrometria de Massas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA