Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Microbiol ; 89: 103416, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32138986

RESUMO

In this study the phenotypic and genomic characterization of two Arcobacter butzleri (Ab) strains (Ab 34_O and Ab 39_O) isolated from pre-cut ready-to-eat vegetables were performed. Results provided useful data about their taxonomy and their overall virulence potential with particular reference to the antibiotic and heavy metal susceptibility. These features were moreover compared with those of two Ab strains isolated from shellfish and a genotaxonomic assessment of the Ab species was performed. The two Ab isolated from vegetables were confirmed to belong to the Aliarcobacter butzleri species by 16S rRNA gene sequence analysis, MLST and genomic analyses. The genome-based taxonomic assessment of the Ab species brought to the light the possibility to define different subspecies reflecting the source of isolation, even though further genomes from different sources should be available to support this hypothesis. The strains isolated from vegetables in the same geographic area shared the same distribution of COGs with a prevalence of the cluster "inorganic ion transport and metabolism", consistent with the lithotrophic nature of Arcobacter spp. None of the Ab strains (from shellfish and from vegetables) metabolized carbohydrates but utilized organic acids and amino acids as carbon sources. The metabolic fingerprinting of Ab resulted less discriminatory than the genome-based approach. The Ab strains isolated from vegetables and those isolated from shellfish endowed multiple resistance to several antibiotics and heavy metals.


Assuntos
Arcobacter/genética , Frutos do Mar/microbiologia , Verduras/microbiologia , Arcobacter/isolamento & purificação , Biologia Computacional , Genômica , Tipagem de Sequências Multilocus , Fenótipo , RNA Ribossômico 16S/genética
2.
Food Microbiol ; 50: 102-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25998822

RESUMO

In the present study, we evaluated the antimicrobial activity of neutral electrolyzed water (NEW) against 14 strains of spoilage Pseudomonas of fresh cut vegetables under cold storage. The NEW, produced from solutions of potassium and sodium chloride, and sodium bicarbonate developed up to 4000 mg/L of free chlorine, depending on the salt and relative concentration used. The antimicrobial effect of the NEW was evaluated against different bacterial strains at 10(5) cells/ml, with different combinations of free chlorine concentration/contact time; all concentrations above 100 mg/L, regardless of the salt used, were found to be bactericidal already after 2 min. When catalogna chicory and lettuce leaves were dipped for 5 min in diluted NEW, microbial loads of mesophilic bacteria and Enterobacteriaceae were reduced on average of 1.7 log cfu/g. In addition, when lettuce leaves were dipped in a cellular suspension of the spoiler Pseudomonas chicorii I3C strain, diluted NEW was able to reduce Pseudomonas population of about 1.0 log cfu/g. Thanks to its high antimicrobial activity against spoilage microorganisms, and low cost of operation, the application of cycles of electrolysis to the washing water looks as an effective tool in controlling fresh cut vegetable microbial spoilage contamination occurring during washing steps.


Assuntos
Cloro/análise , Enterobacteriaceae/fisiologia , Contaminação de Alimentos/prevenção & controle , Pseudomonas/fisiologia , Verduras/microbiologia , Água/química , Carga Bacteriana , Cichorium intybus/microbiologia , Contagem de Colônia Microbiana , Desinfetantes/análise , Eletrólise/economia , Eletrólise/métodos , Enterobacteriaceae/efeitos dos fármacos , Microbiologia de Alimentos/métodos , Lactuca/microbiologia , Cloreto de Potássio/análise , Bicarbonato de Sódio/análise , Cloreto de Sódio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA