Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Bioresour Technol ; 395: 130351, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266785

RESUMO

The present research explored the sustainable production of biodiesel from mixed oils of marine macroalgae and non-edible seeds using a sulphonated Zinc doped recyclable biochar catalyst derived from coconut husk. The maximum biodiesel conversion of 94.8 % was yielded with optimized conditions of 10:1 methanol to oil molar ratio, 4.8 % biochar catalyst concentration, 54.5 ℃ temperature and 87.4 min reaction time. A techno-economic assessment provided a favourable return on investment (ROI) of 21.59 % and 4.63 years of reimbursement period, with a calculated minimum selling price of 0.81 $/kg of produced biodiesel. The carbon footprint analysis results estimated an annual emission of 752.07 t CO2 which corresponds to 0.088 kg CO2 emission per kg of biodiesel produced from the simulated process. The study on economic viability and environmental consciousness of biodiesel production not only paves the way for a greener and sustainable future while also contributing to low carbon footprint.


Assuntos
Carvão Vegetal , Óleos de Plantas , Zinco , Biocombustíveis/análise , Dióxido de Carbono/análise , Pegada de Carbono , Sementes/química , Catálise , Esterificação
2.
Chemosphere ; 339: 139724, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541444

RESUMO

Marine macroalgae have attracted significant interest as a viable resource for biofuel and value-added chemical production due to their abundant availability, low production costs, and high carbohydrate and lipid content. The growing awareness of socio-economic factors worldwide has led to a greater consideration of marine macroalgae as a sustainable source for biofuel production and the generation of valuable products. The integration of biorefinery techniques into biofuel production processes holds immense potential for fostering the development of a circular bioeconomy on a broad scale. Extensive research was focused on the technoeconomic and environmental impact analysis of biofuel production from macroalgal biomass. The integrated biorefinery processes offers valuable pathways for the practical implementation of macroalgae in diverse conversion technologies. These studies provided crucial insights into the large-scale industrial production of biofuels and associated by-products. This review explores the utilization of marine macroalgal biomass for the production of biofuels and biochemicals. It examines the application of assessment tools for evaluating the sustainability of biorefinery processes, including process integration and optimization, life cycle assessment, techno-economic analysis, socio-economic analysis, and multi-criteria decision analysis. The review also discusses the limitations, bottlenecks, challenges, and future perspectives associated with utilizing macroalgal biomass for the production of biofuels and value-added chemicals.


Assuntos
Biocombustíveis , Alga Marinha , Biomassa , Custos e Análise de Custo , Carboidratos
3.
Bioresour Technol ; 379: 129044, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37044151

RESUMO

The consumption of energy levels has increased in association with economic growth and concurrently increased the energy demand from renewable sources. The need under Sustainable Development Goals (SDG) intends to explore various technological advancements for the utilization of waste to energy. Municipal Solid Waste (MSW) has been reported as constructive feedstock to produce biofuels, biofuel carriers and biochemicals using energy-efficient technologies in risk freeways. The present review contemplates risk assessment and challenges in sorting and transportation of MSW and different aspects of conversion of MSW into energy are critically analysed. The circular bioeconomy of energy production strategies and management of waste are also analysed. The current scenario on MSW and its impacts on the environment are elucidated in conjunction with various policies and amendments equipped for the competent management of MSW in order to fabricate a sustained environment.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Resíduos Sólidos/análise , Inteligência Artificial , Estabilidade Econômica , Biocombustíveis/análise
4.
Bioresour Technol ; 376: 128880, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36921639

RESUMO

In the present study, Ricinus communis seed oil with high free fatty acid content was utilized for the one-pot biodiesel production using 1-(2,3-dihydroxy)-propyl-3-methylimidazolium hydroxide, a basic ionic liquid catalyst. The 97.83% biodiesel yield was obtained at the optimized conditions of 6.26 % (w/w) of catalyst concentration, 10.51:1 M ratio of methanol to oil, 57.87 °C temperature and reaction time of 61.01 min. The transesterification of Ricinus communis seed oil to biodiesel exhibited an activation energy of 37.60 kJ/mol. The technoeconomic analysis, the profitability and the sensitivity analysis were investigated for the simulated process design. The technoeconomic analysis reported a total revenue of 20,455,431 $/yr, with gross margins, ROI, payback period, IRR, and NPV of 23.54%, 35.72%, 2.8 years, 28.20%, and 19,287,000 $, respectively. According to the sensitivity analysis, the two most important factors determining the economic viability of the simulated process are Ricinus communis seed oil cost and biodiesel selling price.


Assuntos
Biocombustíveis , Óleos de Plantas , Óleo de Rícino , Esterificação , Catálise , Ricinus
5.
Bioresour Technol ; 335: 125260, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34015566

RESUMO

The present work was focused on the investigation of lignin isolation from saw industry biomass (sawdust (SD)) using alkali solution, and to perform economic analysis for 2000 kg/batch hypothetical plant using techno-economic analysis. The isolated lignin was fractionated using organic solvent to obtain purified lignin. FTIR and 1H NMR analysis were performed to examine the structural characteristics of lignin. Lignin nanoparticles (LN) showed higher total phenolic content (TPC) (244.1 ± 2 µg of GAE per mg) and antioxidant activity (63.2 ± 1.7%) compared with crude lignin (CL), ethanol fractionated lignin (EL), and acetone fractionated lignin (AL). SuperPro designer was exposed to design and simulated 2000 kg/batch of sawdust fractionation process. The techno-economic analysis estimated that the lignin production cost is about $ 487,000 per year, and the annual revenue could be $ 1,850,000 per year. The techno-economic analysis and sensitivity analysis could be useful for the industrial level sawdust fractionation process.


Assuntos
Álcalis , Lignina , Fracionamento Químico , Análise Custo-Benefício , Resíduos Industriais
6.
Bioresour Technol ; 315: 123852, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32712516

RESUMO

The present research work is aimed at reducing the consumption of reactants by process optimization and economic analysis of large-scale commercial plant using techno-economic analysis. The statistical optimization of biodiesel production from Calophyllum inophyllum oil using Zn doped CaO nanocatalyst was used to optimize the conversion efficiency and green chemistry value. The environmental studies on transesterification reaction were done using green chemistry parameters like carbon efficiency, atom economy, reaction mass efficiency, stoichiometric factor and environmental factor. The biodiesel conversion 91.95% was achieved when maintaining the methanol to oil ratio 9.66:1, concentration of catalyst 5% (w/v), time 81.31 min and temperature 56.71 °C with green chemistry value of 0.873. Techno-economic analysis of biodiesel production from Calophyllum inophyllum oil was executed used optimized lab-scale data. The techno-economic analysis of 21 million kg/year biodiesel production plant was investigated. The annual biodiesel revenue of 15,224,000 $/yr and the payback period was about 1.15 years.


Assuntos
Calophyllum , Biocombustíveis , Catálise , Esterificação , Óleos de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA