Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 62(5): 1313-1332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305814

RESUMO

Precise feedback assures precise control commands especially for assistive or rehabilitation devices. Biofeedback systems integrated with assistive or rehabilitative robotic exoskeletons tend to increase its performance and effectiveness. Therefore, there has been plenty of research in the field of biofeedback covering different aspects such as signal acquisition, conditioning, feature extraction and integration with the control system. Among several types of biofeedback systems, Force myography (FMG) technique is a promising one in terms of affordability, high classification accuracies, ease to use, and low computational cost. Compared to traditional biofeedback systems such as electromyography (EMG) which offers some invasive techniques, FMG offers a completely non-invasive solution with much less effort for preprocessing with high accuracies. This work covers the whole aspects of FMG technique in terms of signal acquisition, feature extraction, signal processing, developing the machine learning model, evaluating tools for the performance of the model. Stating the difference between real-time and offline assessment, also highlighting the main uncovered points for further study, and thus enhancing the development of this technique.


Assuntos
Movimento , Miografia , Miografia/métodos , Eletromiografia/métodos , Fenômenos Mecânicos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA