Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Toxicol Lett ; 335: 64-70, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33098906

RESUMO

This paper outlines a new concept to optimise testing strategies for improving the efficiency of chemical testing for hazard-based risk management. While chemical classification based on standard checklists of information triggers risk management measures, the link is not one-to-one. Toxicity testing may be performed with no impact on the safe use of chemicals . Each hazard class and category is not assigned a unique pictogram and for the purpose of this proof-of-concept study, the level of concern for a chemical for the population and the environment is simplistically considered to be reflected by the hazard pictograms. Using active substances in biocides and plant protection products as a dataset, three testing strategies were built with the boundary condition that an optimal approach must indicate a given level of concern while requiring less testing (strategy B), prioritising new approach methodologies (strategy C) or combining the two considerations (strategy D). The implementation of the strategies B and D reduced the number of tests performed by 6.0% and 8.8%, respectively, while strategy C relied the least on in vivo methods. The intentionally simplistic approach to optimised testing strategies presented here could be used beyond the assessment of biocides and plant protection products to gain efficiencies in the safety assessment of other chemical groups, saving animals and making regulatory testing more time- and cost-efficient.


Assuntos
Segurança Química/métodos , Poluentes Ambientais/toxicidade , Substâncias Perigosas/toxicidade , Testes de Toxicidade/métodos , Segurança Química/legislação & jurisprudência , Poluentes Ambientais/classificação , União Europeia , Regulamentação Governamental , Substâncias Perigosas/classificação , Humanos , Medição de Risco , Gestão de Riscos
3.
Aquat Toxicol ; 225: 105543, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32585540

RESUMO

Species sensitivity distributions (SSDs) are used in chemical safety assessments to derive predicted-no-effect-concentrations (PNECs) for substances with a sufficient amount of relevant and reliable ecotoxicity data available. For engineered nanomaterials (ENMs), ecotoxicity data are often compromised by poor reproducibility and the lack of nano-specific characterization needed describe an ENM under test exposure conditions. This may influence the outcome of SSD modelling and hence the regulatory decision-making. This study investigates how the outcome of SSD modelling is influenced by: 1) Selecting input data based on the nano-specific "nanoCRED" reliability criteria, 2) Direct SSD modelling avoiding extrapolation of data by including long-term/chronic NOECs only, and 3) Weighting data according to their nano-specific quality, the number of data available for each species, and the trophic level abundance in the ecosystem. Endpoints from freshwater ecotoxicity studies were collected for the representative nanomaterials NM-300 K (silver) and NM-105 (titanium dioxide), evaluated for regulatory reliability and scored according to the level of nano-specific characterization conducted. The compiled datasets are unique in exclusively dealing with representative ENMs showing minimal batch-to-batch variation. The majority of studies were evaluated as regulatory reliable, while the degree of nano-specific characterization varied greatly. The datasets for NM-300 K and NM-105 were used as input to the nano-weighted n-SSWD model, the probabilistic PSSD+, and the conventional SSD Generator by the US EPA. The conventional SSD generally yielded the most conservative, but least precise HC5 values, with 95 % confidence intervals up to 100-fold wider than the other models. The inclusion of regulatory reliable data only, had little effect on the HC5 generated by the conventional SSD and the PSSD+, whereas the n-SSWD estimated different HC5 values based on data segregated according to reliability, especially for NM-105. The n-SSWD weighting of data significantly affected the estimated HC5 values, however in different ways for the sub-datasets of NM-300 K and NM-105. For NM-300 K, the inclusion of NOECs only in the weighted n-SSWD yielded the most conservative HC5 of all datasets and models (a HC5 based on NOECs only could not be estimated for NM-105, due to limited number of data). Overall, the estimated HC5 values of all models are within a relatively limited concentration range of 25-100 ng Ag/L for NM-300 K and 1-15 µgTiO2/L for NM-105.


Assuntos
Nanoestruturas/toxicidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Ecossistema , Água Doce/química , Reprodutibilidade dos Testes , Medição de Risco , Prata/toxicidade , Titânio/toxicidade
4.
Environ Sci Technol ; 52(23): 13670-13680, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30422633

RESUMO

Proxy measures have been proposed as a low-data option for simplified assessment of environmental threat given the high complexity of the natural environment. We here review studies of environmental release, fate, toxicity, and risk to identify relevant proxy measures for manufactured nanomaterials (MNMs). In total, 18 potential proxy measures were identified and evaluated regarding their link to environmental risk, an aspect of relevance, and data availability, an aspect of practice. They include socio-technical measures (e.g., MNM release), particle-specific measures (e.g., particle size), partitioning coefficients (e.g., the octanol-water coefficient), and other fate-related measures (e.g., half-life) as well as various ecotoxicological measures (e.g., 50% effect concentration). For most identified proxy measures, the link to environmental risk was weak and data availability low. Two exceptions were global production volume and ecotoxicity, for which the links to environmental risk are strong and data availability relatively decent. As proof of concept, these were employed to assess seven MNMs: titanium dioxide, cerium dioxide, zinc oxide, silver, silicon dioxide, carbon nanotubes, and graphene. The results show that none of the MNMs have both high production volumes and high ecotoxicity. Several refinements of the assessment are possible, such as higher resolution regarding the MNMs assessed (e.g., different allotropes) and different metrics (e.g., particle number and surface area). The proof of concept shows the feasibility of using proxy measures for environmental assessment of MNMs, in particular for novel MNMs in early technological development, when data is particularly scarce.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Óxido de Zinco , Ecotoxicologia , Tamanho da Partícula , Medição de Risco
5.
Chemosphere ; 182: 525-531, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28521168

RESUMO

Nanoremediation with iron (Fe) nanomaterials opens new doors for treating contaminated soil and groundwater, but is also accompanied by new potential risks as large quantities of engineered nanomaterials are introduced into the environment. In this study, we have assessed the ecotoxicity of four engineered Fe nanomaterials, specifically, Nano-Goethite, Trap-Ox Fe-zeolites, Carbo-Iron® and FerMEG12, developed within the European FP7 project NanoRem for sub-surface remediation towards a test battery consisting of eight ecotoxicity tests on bacteria (V. fisheri, E. coli), algae (P. subcapitata, Chlamydomonas sp.), crustaceans (D. magna), worms (E. fetida, L. variegatus) and plants (R. sativus, L. multiflorum). The tested materials are commercially available and include Fe oxide and nanoscale zero valent iron (nZVI), but also hybrid products with Fe loaded into a matrix. All but one material, a ball milled nZVI (FerMEG12), showed no toxicity in the test battery when tested in concentrations up to 100 mg/L, which is the cutoff for hazard labeling in chemicals regulation in Europe. However it should be noted that Fe nanomaterials proved challenging to test adequately due to their turbidity, aggregation and sedimentation behavior in aqueous media. This paper provides a number of recommendations concerning future testing of Fe nanomaterials and discusses environmental risk assessment considerations related to these.


Assuntos
Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Ferro/química , Ferro/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Toxicidade/métodos , Animais , Poluição Ambiental , Europa (Continente) , Zeolitas
6.
Environ Pollut ; 228: 398-407, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28554029

RESUMO

Evidence is increasing that micro- and nanoplastic particles can have adverse effects on aquatic organisms. Exposure studies have so far mainly been qualitative since quantitative measurements of particle ingestion are analytically challenging. The aim of this study was therefore to use a quantitative approach for determining ingestion and egestion of micro- and nanoplastics in Daphnia magna and to analyze the influence of particle size, exposure duration and the presence of food. One week old animals were exposed to 2 µm and 100 nm fluorescent polystyrene beads (1 mg/l) for 24 h, followed by a 24 h egestion period in clean medium. During both phases body burdens of particles were determined by measuring the fluorescence intensity in dissolved tissues. Ingestion and egestion were investigated in the absence and presence of food (6.7·105 cells of Raphidocelis subcapitata per ml). Furthermore, feeding rates of daphnids in response to particle exposure were measured as well as effects on reproduction during a 21 days exposure (at 1 mg/l, 0.5 mg/l and 0.1 mg/l) to investigate potential impairments of physiology. Both particle sizes were readily ingested, but the ingested mass of particles was five times higher for the 2 µm particles than for the 100 nm particles. Complete egestion did not occur within 24 h but generally higher amounts of the 2 µm particles were egested. Animal body burdens of particles were strongly reduced in the presence of food. Daphnid feeding rates decreased by 21% in the presence of 100 nm particles, but no effect on reproduction was found despite high body burdens of particles at the end of 21 days exposure. The lower egestion and decreased feeding rates, caused by the 100 nm particles, could indicate that particles in the nanometer size range are potentially more hazardous to D. magna compared to larger particle sizes.


Assuntos
Daphnia/fisiologia , Plásticos/metabolismo , Poluentes da Água/metabolismo , Animais , Carga Corporal (Radioterapia) , Clorófitas/metabolismo , Clorófitas/fisiologia , Ingestão de Alimentos , Nanopartículas/metabolismo , Tamanho da Partícula , Plásticos/análise , Poliestirenos/metabolismo , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Poluentes da Água/análise
7.
Environ Sci Eur ; 29(1): 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337404

RESUMO

The European Chemical Agency (ECHA) is in the process of revising its guidance documents on how to address the challenges of ecotoxicological testing of nanomaterials. In these revisions, outset is taken in the hypothesis that ecotoxicological test methods, developed for soluble chemicals, can be made applicable to nanomaterials. European Research Council project EnvNano-Environmental Effects and Risk Evaluation of Engineered, which ran from 2011 to 2016, took another outset by assuming that: "The behaviour of nanoparticles in suspension is fundamentally different from that of chemicals in solution". The aim of this paper is to present the findings of the EnvNano project and through these provide the scientific background for specific recommendations on how ECHA guidance could be further improved. Key EnvNano findings such as the need to characterize dispersion and dissolution rates in stock and test media have partially been addressed in the updated guidance. However, it has to be made clear that multiple characterization methods have to be applied to describe state of dispersion and dissolution over time and for various test concentration. More detailed information is called for on the specific characterization methods and techniques available and their pros and cons. Based on findings in EnvNano, we recommend that existing algal tests are supplemented with tests where suspensions of nanomaterials are aged for 1-3 days for nanomaterials that dissolve in testing media. Likewise, for daphnia tests we suggest to supplement with tests where (a) exposure is shortened to a 3 h pulse exposure in daphnia toxicity tests with environmentally hazardous metal and metal oxide nanomaterials prone to dissolution; and (b) food abundance is three to five times higher than normal, respectively. We further suggest that the importance of considering the impact of shading in algal tests is made more detailed in the guidance and that it is specified that determination of uptake, depuration and trophic transfer of nanomaterials for each commercialized functionalization of the nanomaterials is required. Finally, as an outcome of the project a method for assessing the regulatory adequacy of ecotoxicological studies of nanomaterials is proposed.

8.
Integr Environ Assess Manag ; 13(1): 177-187, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26887668

RESUMO

The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case for alternatives assessment approaches, because they can be considered both emerging "chemicals" of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging, and critical elements in chemical hazard and exposure assessment may have to be fundamentally altered to sufficiently address nanomaterials. The aim of this paper is to assess the overall applicability of alternatives assessment methods for nanomaterials and to outline recommendations to enhance their use in this context. The present paper focuses on the adaptability of existing hazard and exposure assessment approaches to engineered nanomaterials as well as strategies to design inherently safer nanomaterials. We argue that alternatives assessment for nanomaterials is complicated by the sheer number of nanomaterials possible. As a result, the inclusion of new data tools that can efficiently and effectively evaluate nanomaterials as substitutes is needed to strengthen the alternatives assessment process. However, we conclude that with additional tools to enhance traditional hazard and exposure assessment modules of alternatives assessment, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. Integr Environ Assess Manag 2017;13:177-187. © 2016 SETAC.


Assuntos
Substâncias Perigosas/toxicidade , Nanoestruturas/toxicidade , Medição de Risco/métodos , Segurança Química , Química Verde
9.
Nanotoxicology ; 10(10): 1442-1447, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27592624

RESUMO

Regulatory ecotoxicity testing of chemicals is of societal importance and a large effort is undertaken at the OECD to ensure that OECD test guidelines (TGs) for nanomaterials (NMs) are available. Significant progress to support the adaptation of selected TGs to NMs was achieved in the context of the project MARINA ( http://www.marina-fp7.eu/ ) funded within the 7th European Framework Program. Eight OECD TGs were adapted based on the testing of at least one ion-releasing NM (Ag) and two inert NMs (TiO2). With the materials applied, two main variants of NMs (ion releasing vs. inert NMs) were addressed. As the modifications of the test guidelines refer to general test topics (e.g. test duration or measuring principle), we assume that the described approaches and modifications will be suitable for the testing of further NMs with other chemical compositions. Firm proposals for modification of protocols with scientific justification(s) are presented for the following tests: growth inhibition using the green algae Raphidocelis subcapitata (formerly: Pseudokirchneriella subcapitata; TG 201), acute toxicity with the crustacean Daphnia magna (TG 202), development toxicity with the fish Danio rerio (TG 210), reproduction of the sediment-living worm Lumbriculus variegatus (TG 225), activity of soil microflora (TGs 216, 217), and reproduction of the invertebrates (Enchytraeus crypticus, Eisenia fetida, TGs 220, 222). Additionally, test descriptions for two further test systems (root elongation of plants in hydroponic culture; test on fish cells) are presented. Ecotoxicological data obtained with the modified test guidelines for TiO2 NMs and Ag NM and detailed method descriptions are available.


Assuntos
Ecotoxicologia , Poluentes Ambientais/toxicidade , Guias como Assunto , Nanoestruturas/toxicidade , Prata/toxicidade , Titânio/toxicidade , Testes de Toxicidade/normas , Animais , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Ecotoxicologia/legislação & jurisprudência , Ecotoxicologia/métodos , Política Ambiental , Nanopartículas/química , Nanopartículas/toxicidade , Nanoestruturas/química , Organização para a Cooperação e Desenvolvimento Econômico , Prata/química , Titânio/química , Testes de Toxicidade/métodos
10.
J Nanopart Res ; 16: 2394, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24944519

RESUMO

Information related to the potential environmental exposure of engineered nanomaterials (ENMs) in the solid waste management phase is extremely scarce. In this paper, we define nanowaste as separately collected or collectable waste materials which are or contain ENMs, and we present a five-step framework for the systematic assessment of ENM exposure during nanowaste management. The framework includes deriving EOL nanoproducts and evaluating the physicochemical properties of the nanostructure, matrix properties and nanowaste treatment processes as well as transformation processes and environment releases, eventually leading to a final assessment of potential ENM exposure. The proposed framework was applied to three selected nanoproducts: nanosilver polyester textile, nanoTiO2 sunscreen lotion and carbon nanotube tennis racquets. We found that the potential global environmental exposure of ENMs associated with these three products was an estimated 0.5-143 Mg/year, which can also be characterised qualitatively as medium, medium, low, respectively. Specific challenges remain and should be subject to further research: (1) analytical techniques for the characterisation of nanowaste and its transformation during waste treatment processes, (2) mechanisms for the release of ENMs, (3) the quantification of nanowaste amounts at the regional scale, (4) a definition of acceptable limit values for exposure to ENMs from nanowaste and (5) the reporting of nanowaste generation data.

11.
Nat Nanotechnol ; 7(7): 409-11, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22751221
12.
Sci Total Environ ; 409(19): 4109-24, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21737121

RESUMO

Conducting environmental risk assessment of engineered nanomaterials has been an extremely challenging endeavor thus far. Moreover, recent findings from the nano-risk scientific community indicate that it is unlikely that many of these challenges will be easily resolved in the near future, especially given the vast variety and complexity of nanomaterials and their applications. As an approach to help optimize environmental risk assessments of nanomaterials, we apply the Worst-Case Definition (WCD) model to identify best estimates for worst-case conditions of environmental risks of two case studies which use engineered nanoparticles, namely nZVI in soil and groundwater remediation and C(60) in an engine oil lubricant. Results generated from this analysis may ultimately help prioritize research areas for environmental risk assessments of nZVI and C(60) in these applications as well as demonstrate the use of worst-case conditions to optimize future research efforts for other nanomaterials. Through the application of the WCD model, we find that the most probable worst-case conditions for both case studies include i) active uptake mechanisms, ii) accumulation in organisms, iii) ecotoxicological response mechanisms such as reactive oxygen species (ROS) production and cell membrane damage or disruption, iv) surface properties of nZVI and C(60), and v) acute exposure tolerance of organisms. Additional estimates of worst-case conditions for C(60) also include the physical location of C(60) in the environment from surface run-off, cellular exposure routes for heterotrophic organisms, and the presence of light to amplify adverse effects. Based on results of this analysis, we recommend the prioritization of research for the selected applications within the following areas: organism active uptake ability of nZVI and C(60) and ecotoxicological response end-points and response mechanisms including ROS production and cell membrane damage, full nanomaterial characterization taking into account detailed information on nanomaterial surface properties, and investigations of dose-response relationships for a variety of organisms.


Assuntos
Poluentes Ambientais/química , Fulerenos/química , Ferro/química , Modelos Teóricos , Nanoestruturas/química , Animais , Exposição Ambiental , Poluentes Ambientais/toxicidade , Recuperação e Remediação Ambiental , Fulerenos/toxicidade , Água Subterrânea/química , Ferro/toxicidade , Nanoestruturas/toxicidade , Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio , Medição de Risco , Solo/química , Propriedades de Superfície , Testes de Toxicidade , Vertebrados/fisiologia
13.
Sci Total Environ ; 408(18): 3852-9, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19945144

RESUMO

This paper helps bridge the gap between scientists and other stakeholders in the areas of human and environmental risk management of chemicals and engineered nanomaterials. This connection is needed due to the evolution of stakeholder awareness and scientific progress related to human and environmental health which involves complex methodological demands on risk management. At the same time, the available scientific knowledge is also becoming more scattered across multiple scientific disciplines. Hence, the understanding of potentially risky situations is increasingly multifaceted, which again challenges risk assessors in terms of giving the 'right' relative priority to the multitude of contributing risk factors. A critical issue is therefore to develop procedures that can identify and evaluate worst case risk conditions which may be input to risk level predictions. Therefore, this paper suggests a conceptual modelling procedure that is able to define appropriate worst case conditions in complex risk management. The result of the analysis is an assembly of system models, denoted the Worst Case Definition (WCD) model, to set up and evaluate the conditions of multi-dimensional risk identification and risk quantification. The model can help optimize risk assessment planning by initial screening level analyses and guiding quantitative assessment in relation to knowledge needs for better decision support concerning environmental and human health protection or risk reduction. The WCD model facilitates the evaluation of fundamental uncertainty using knowledge mapping principles and techniques in a way that can improve a complete uncertainty analysis. Ultimately, the WCD is applicable for describing risk contributing factors in relation to many different types of risk management problems since it transparently and effectively handles assumptions and definitions and allows the integration of different forms of knowledge, thereby supporting the inclusion of multifaceted risk components in cumulative risk management.


Assuntos
Poluentes Ambientais/toxicidade , Compostos Inorgânicos/toxicidade , Modelos Teóricos , Nanoestruturas/toxicidade , Compostos Orgânicos/toxicidade , Gestão de Riscos/métodos , Exposição Ambiental/prevenção & controle , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental , Poluição Ambiental/estatística & dados numéricos , Humanos , Medição de Risco/métodos , Fatores de Risco
14.
Ecotoxicology ; 17(5): 438-47, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18454314

RESUMO

Exposure assessment is crucial for risk assessment for nanomaterials. We propose a framework to aid exposure assessment in consumer products. We determined the location of the nanomaterials and the chemical identify of the 580 products listed in the inventory maintained by the Woodrow Wilson International Center for Scholars, of which 37% used nanoparticles suspended in liquids, whereas <1% contained "free airborne nanoparticles". C(60) is currently only used as suspended nanoparticles in liquids and nanosilver is used more as surface bound nanoparticles than as particles suspended in liquids. Based on the location of the nanostructure we were able to further group the products into categories of: (1) expected, (2) possible, and (3) no expected exposure. Most products fall into the category of expected exposure, but we were not able to complete a quantitative exposure assessment mainly due to the lack of information on the concentration of the nanomaterial in the products--a problem that regulators and industry will have to address if we are to have realistic exposure assessment in the future. To illustrate the workability of our procedure, we applied it to four product scenarios using the best estimates available and/or worst-case assumptions. Using the best estimates available and/or worst-case assumptions we estimated the consumer exposure to be 26, 15, and 44 microg kg(-1) bw year(-1) for a facial lotion, a fluid product, and a spray product containing nanoparticles, respectively. The application of sun lotion containing 2% nanoparticles result in an exposure of 56.7 mg kg(-1) bw d(-1) for a 2-year-old child, if the amounts applied correspond to the European Commission recommendations on use of sunscreen.


Assuntos
Qualidade de Produtos para o Consumidor , Exposição Ambiental , Nanoestruturas , Cosméticos , Substâncias Perigosas , Humanos , Medição de Risco/métodos , Protetores Solares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA