Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 13(1): 839, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646810

RESUMO

The European Quality of Government Index (EQI) measures the perceived level of government quality by European Union citizens, combining surveys on corruption, impartiality and quality of provided services. It is, thus, an index based on individual subjective evaluations. Understanding the most relevant objective factors affecting the EQI outcomes is important for both evaluators and policy makers, especially in view of the fact that perception of government integrity contributes to determine the level of civic engagement. In our research, we employ methods of Artificial Intelligence and complex systems physics to measure the impact on the perceived government quality of multifaceted variables, describing territorial development and citizen well-being, from an economic, social and environmental viewpoint. Our study, focused on a set of regions in European Union at a subnational scale, leads to identifying the territorial and demographic drivers of citizens' confidence in government institutions. In particular, we find that the 2021 EQI values are significantly related to two indicators: the first one is the difference between female and male labour participation rates, and the second one is a proxy of wealth and welfare such as the average number of rooms per inhabitant. This result corroborates the idea of a central role played by labour gender equity and housing policies in government confidence building. In particular, the relevance of the former indicator in EQI prediction results from a combination of positive conditions such as equal job opportunities, vital labour market, welfare and availability of income sources, while the role of the latter is possibly amplified by the lockdown policies related to the COVID-19 pandemics. The analysis is based on combining regression, to predict EQI from a set of publicly available indicators, with the eXplainable Artificial Intelligence approach, that quantifies the impact of each indicator on the prediction. Such a procedure does not require any ad-hoc hypotheses on the functional dependence of EQI on the indicators used to predict it. Finally, using network science methods concerning community detection, we investigate how the impact of relevant indicators on EQI prediction changes throughout European regions. Thus, the proposed approach enables to identify the objective factors at the basis of government quality perception by citizens in different territorial contexts, providing the methodological basis for the development of a quantitative tool for policy design.


Assuntos
COVID-19 , Masculino , Humanos , Feminino , COVID-19/epidemiologia , Inteligência Artificial , Controle de Doenças Transmissíveis , Governo , Ocupações
2.
Front Big Data ; 5: 1027783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36567754

RESUMO

Introduction: Dementia is an umbrella term indicating a group of diseases that affect the cognitive sphere. Dementia is not a mere individual health issue, since its interference with the ability to carry out daily activities entails a series of collateral problems, comprising exclusion of patients from civil rights and welfare, unpaid caregiving work, mostly performed by women, and an additional burden on the public healthcare systems. Thus, gender and wealth inequalities (both among individuals and among countries) tend to amplify the social impact of such a disease. Since at present there is no cure for dementia but only drug treatments to slow down its progress and mitigate the symptoms, it is essential to work on prevention and early diagnosis, identifying the risk factors that increase the probability of its onset. The complex and multifactorial etiology of dementia, resulting from an interplay between genetics and environmental factors, can benefit from a multidisciplinary approach that follows the "One Health" guidelines of the World Health Organization. Methods: In this work, we apply methods of Artificial Intelligence and complex systems physics to investigate the possibility to predict dementia prevalence throughout world countries from a set of variables concerning individual health, food consumption, substance use and abuse, healthcare system efficiency. The analysis uses publicly available indicator values at a country level, referred to a time window of 26 years. Results: Employing methods based on eXplainable Artificial Intelligence (XAI) and complex networks, we identify a group of lifestyle factors, mostly concerning nutrition, that contribute the most to dementia incidence prediction. Discussion: The proposed approach provides a methodological basis to develop quantitative tools for action patterns against such a disease, which involves issues deeply related with sustainable, such as good health and resposible food consumption.

3.
Sci Rep ; 10(1): 18046, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093554

RESUMO

Nowadays, world rankings are promoted and used by international agencies, governments and corporations to evaluate country performances in a specific domain, often providing a guideline for decision makers. Although rankings allow a direct and quantitative comparison of countries, sometimes they provide a rather oversimplified representation, in which relevant aspects related to socio-economic development are either not properly considered or still analyzed in silos. In an increasingly data-driven society, a new generation of cutting-edge technologies is breaking data silos, enabling new use of public indicators to generate value for multiple stakeholders. We propose a complex network framework based on publicly available indicators to extract important insight underlying global rankings, thus adding value and significance to knowledge provided by these rankings. This approach enables the unsupervised identification of communities of countries, establishing a more targeted, fair and meaningful criterion to detect similarities. Hence, the performance of states in global rankings can be assessed based on their development level. We believe that these evaluations can be crucial in the interpretation of global rankings, making comparison between countries more significant and useful for citizens and governments and creating ecosystems for new opportunities for development.

4.
Alzheimers Dement ; 10(4): 456-467, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24035058

RESUMO

BACKGROUND: In the framework of the clinical validation of research tools, this investigation presents a validation study of an automatic medial temporal lobe atrophy measure that is applied to a naturalistic population sampled from memory clinic patients across Europe. METHODS: The procedure was developed on 1.5-T magnetic resonance images from the Alzheimer's Disease Neuroimaging Initiative database, and it was validated on an independent data set coming from the DESCRIPA study. All images underwent an automatic processing procedure to assess tissue atrophy that was targeted at the hippocampal region. For each subject, the procedure returns a classification index. Once provided with the clinical assessment at baseline and follow-up, subjects were grouped into cohorts to assess classification performance. Each cohort was divided into converters (co) and nonconverters (nc) depending on the clinical outcome at follow-up visit. RESULTS: We found the area under the receiver operating characteristic curve (AUC) was 0.81 for all co versus nc subjects, and AUC was 0.90 for subjective memory complaint (SMCnc) versus all co subjects. Furthermore, when training on mild cognitive impairment (MCI-nc/MCI-co), the classification performance generally exceeds that found when training on controls versus Alzheimer's disease (CTRL/AD). CONCLUSIONS: Automatic magnetic resonance imaging analysis may assist clinical classification of subjects in a memory clinic setting even when images are not specifically acquired for automatic analysis.


Assuntos
Doença de Alzheimer/complicações , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Sintomas Prodrômicos , Lobo Temporal/patologia , Idoso , Idoso de 80 Anos ou mais , Atrofia/diagnóstico , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Bases de Dados Factuais/estatística & dados numéricos , Feminino , Seguimentos , Hipocampo/patologia , Humanos , Masculino , Entrevista Psiquiátrica Padronizada , Reprodutibilidade dos Testes
5.
Med Phys ; 36(8): 3737-47, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19746807

RESUMO

The purpose of this study is to develop a software for the extraction of the hippocampus and surrounding medial temporal lobe (MTL) regions from T1-weighted magnetic resonance (MR) images with no interactive input from the user, to introduce a novel statistical indicator, computed on the intensities in the automatically extracted MTL regions, which measures atrophy, and to evaluate the accuracy of the newly developed intensity-based measure of MTL atrophy to (a) distinguish between patients with Alzheimer disease (AD), patients with amnestic mild cognitive impairment (aMCI), and elderly controls by using established criteria for patients with AD and aMCI as the reference standard and (b) infer about the clinical outcome of aMCI patients. For the development of the software, the study included 61 patients with mild AD (17 men, 44 women; mean age +/- standard deviation (SD), 75.8 years +/- 7.8; Mini Mental State Examination (MMSE) score, 24.1 +/- 3.1), 42 patients with aMCI (11 men, 31 women; mean age +/- SD, 75.2 years +/- 4.9; MMSE score, 27.9 +/- 1.9), and 30 elderly healthy controls (10 men, 20 women; mean age +/- SD, 74.7 years +/- 5.2; MMSE score, 29.1 +/- 0.8). For the evaluation of the statistical indicator, 150 patients with mild AD (62 men, 88 women; mean age +/- SD, 76.3 years +/- 5.8; MMSE score, 23.2 +/- 4.1), 247 patients with aMCI (143 men, 104 women; mean age +/- SD, 75.3 years +/- 6.7; MMSE score, 27.0 +/- 1.8), and 135 elderly healthy controls (61 men, 74 women; mean age +/- SD, 76.4 years +/- 6.1). Fifty aMCI patients were evaluated every 6 months over a 3 year period to assess conversion to AD. For each participant, two subimages of the MTL regions were automatically extracted from T1-weighted MR images with high spatial resolution. An intensity-based MTL atrophy measure was found to separate control, MCI, and AD cohorts. Group differences were assessed by using two-sample t test. Individual classification was analyzed by using receiver operating characteristic (ROC) curves. Compared to controls, significant differences in the intensity-based MTL atrophy measure were detected in both groups of patients (AD vs controls, 0.28 +/- 0.03 vs 0.34 +/- 0.03, P < 0.001; aMCI vs controls, 0.31 +/- 0.03 vs 0.34 +/- 0.03, P < 0.001). Moreover, the subgroup of aMCI converters was significantly different from controls (0.27 +/- 0.034 vs 0.34 +/- 0.03, P < 0.001). Regarding the ROC curve for intergroup discrimination, the area under the curve was 0.863 for AD patients vs controls, 0.746 for all aMCI patients vs controls, and 0.880 for aMCI converters vs controls. With specificity set at 85%, the sensitivity was 74% for AD vs controls, 45% for aMCI vs controls, and 83% for aMCI converters vs controls. The automated analysis of MTL atrophy in the segmented volume is applied to the early assessment of AD, leading to the discrimination of aMCI converters with an average 3 year follow-up. This procedure can provide additional useful information in the early diagnosis of AD.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Atrofia , Técnica de Subtração , Lobo Temporal/patologia , Idoso , Automação , Feminino , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Software , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA