Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 16(3): e0247452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651835

RESUMO

The treatability of seven wastewater samples generated by a textile digital printing industry was evaluated by employing 1) anammox-based processes for nitrogen removal 2) microalgae (Chlorella vulgaris) for nutrient uptake and biomass production 3) white-rot fungi (Pleurotus ostreatus and Phanerochaete chrysosporium) for decolorization and laccase activity. The biodegradative potential of each type of organism was determined in batch tests and correlated with the main characteristics of the textile wastewaters through statistical analyses. The maximum specific anammox activity ranged between 0.1 and 0.2 g N g VSS-1 d-1 depending on the sample of wastewater; the photosynthetic efficiency of the microalgae decreased up to 50% during the first 24 hours of contact with the textile wastewaters, but it improved from then on; Pleurotus ostreatus synthetized laccases and removed between 20-62% of the colour after 14 days, while the enzymatic activity of Phanerochaete chrysosporium was inhibited. Overall, the findings suggest that all microbes have great potential for the treatment and valorisation of textile wastewater after tailored adaptation phases. Yet, the depurative efficiency can be probably enhanced by combining the different processes in sequence.


Assuntos
Purificação da Água/métodos , Compostos de Amônio/análise , Compostos de Amônio/química , Compostos de Amônio/metabolismo , Biodegradação Ambiental , Biomassa , Chlorella vulgaris/metabolismo , Resíduos Industriais/análise , Resíduos Industriais/prevenção & controle , Microalgas/metabolismo , Phanerochaete/metabolismo , Pleurotus/metabolismo , Indústria Têxtil/tendências , Águas Residuárias/análise , Águas Residuárias/química
2.
Environ Sci Pollut Res Int ; 28(34): 46643-46654, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33078358

RESUMO

Digital textile printing (DTP) is a game-changer technology that is rapidly expanding worldwide. On the other hand, process wastewater is rich in ammoniacal and organic nitrogen, resulting in relevant issues for discharge into sewer system and treatment in centralized plants. The present research is focused on the assessment of the partial nitritation/anammox process in a single-stage granular sequencing batch reactor for on-site decentralized treatment. The technical feasibility of the process was assessed by treating wastewater from five DTP industries in a laboratory-scale reactor, in one case investigating long-term process stabilization. While experimental results indicated nitrogen removal efficiencies up to about 70%, complying with regulations on discharge in sewer system, these data were used as input for process modelling, whose successful parameter calibration was carried out. The model was applied to the simulation of two scenarios: (i) the current situation of a DTP company, in which wastewater is discharged into the sewer system and treated in a centralized plant, (ii) the modified situation in which on-site decentralized treatment for DTP wastewater is implemented. The second scenario resulted in significant improvements, including reduced energy consumption (- 15%), reduced greenhouse gases emission, elimination of external carbon source for completing denitrification at centralized WWTP and reduced sludge production (- 25%).


Assuntos
Nitrogênio , Águas Residuárias , Amônia , Reatores Biológicos , Desnitrificação , Oxirredução , Avaliação de Processos em Cuidados de Saúde , Esgotos , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA