Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Antimicrob Chemother ; 74(7): 1952-1961, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039251

RESUMO

OBJECTIVES: Our aim was to identify the pharmacokinetic/pharmacodynamic parameters of minocycline in the hollow-fibre system (HFS) model of pulmonary Mycobacterium avium complex (MAC) and to identify the optimal clinical dose. METHODS: Minocycline MICs for 55 MAC clinical isolates from the Netherlands were determined. We also co-incubated primary isolated macrophages infected with MAC with minocycline. Next, we performed a 28 day HFS-MAC model dose-response study in which we mimicked pulmonary concentration-time profiles achieved in patients. The HFS-MAC model was sampled at intervals to determine the minocycline pharmacokinetics and MAC burden. We identified the AUC0-24/MIC ratios associated with 1.0 log10 cfu/mL kill below day 0 (stasis), defined as a bactericidal effect. We then performed 10000 Monte Carlo experiments to identify the optimal dose for a bactericidal effect in patients. RESULTS: The MIC for 50% and 90% of cumulative clinical isolates was 8 and 64 mg/L, respectively. Minocycline decreased MAC bacterial burden below stasis in primary isolated macrophages. In the HFS-MAC model, minocycline achieved a microbial kill of 3.6 log10 cfu/mL below stasis. The AUC0-24/MIC exposure associated with a bactericidal effect was 59. Monte Carlo experiments identified a minocycline susceptibility MIC breakpoint of 16 mg/L. At this proposed breakpoint, the clinical dose of 200 mg/day achieved the bactericidal effect exposure target in ∼50% of patients, while 400 mg/day achieved this in 73.6% of patients, in Monte Carlo experiments. CONCLUSIONS: Minocycline at a dose of 400 mg/day is expected to be bactericidal. We propose a clinical trial for validation.


Assuntos
Teorema de Bayes , Minociclina/uso terapêutico , Modelos Biológicos , Complexo Mycobacterium avium/efeitos dos fármacos , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Algoritmos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Linhagem Celular , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Minociclina/farmacologia , Método de Monte Carlo
2.
J Antimicrob Chemother ; 74(6): 1607-1617, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30820554

RESUMO

BACKGROUND: MDR-TB and XDR-TB have poor outcomes. OBJECTIVES: To examine the efficacy of tigecycline monotherapy in the hollow fibre system model of TB. METHODS: We performed pharmacokinetic/pharmacodynamic studies using tigecycline human-like concentration-time profiles in the hollow fibre system model of TB in five separate experiments using Mycobacterium tuberculosis in log-phase growth or as semi-dormant or intracellular bacilli, as monotherapy. We also compared efficacy with the isoniazid/rifampicin/pyrazinamide combination (standard therapy). We then applied extinction mathematics, morphisms and Latin hypercube sampling to identify duration of therapy with tigecycline monotherapy. RESULTS: The median tigecycline MIC for 30 M. tuberculosis clinical and laboratory isolates (67% MDR/XDR) was 2 mg/L. Tigecycline monotherapy was highly effective in killing M. tuberculosis in log-phase-growth and semi-dormant and intracellular M. tuberculosis. Once-a-week dosing had the same efficacy as daily therapy for the same cumulative dose; thus, tigecycline efficacy was linked to the AUC0-24/MIC ratio. Tigecycline replacement by daily minocycline after 4 weeks of therapy was effective in sterilizing bacilli. The AUC0-24/MIC ratio associated with optimal kill was 42.3. Tigecycline monotherapy had a maximum sterilizing effect (day 0 minus day 28) of 3.06 ±âŸ0.20 log10 cfu/mL (r2 = 0.92) compared with 3.92 ±âŸ0.45 log10 cfu/mL (r2 = 0.80) with optimized standard therapy. In our modelling, at a tigecycline monotherapy duration of 12 months, the proportion of patients with XDR-TB who reached bacterial population extinction was 64.51%. CONCLUSIONS: Tigecycline could cure patients with XDR-TB or MDR-TB who have failed recommended therapy. Once-a-week tigecycline could also replace second-line injectables in MDR-TB regimens.


Assuntos
Antituberculosos/administração & dosagem , Mycobacterium tuberculosis/efeitos dos fármacos , Tigeciclina/administração & dosagem , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/farmacocinética , Esquema de Medicação , Monitoramento de Medicamentos , Quimioterapia Combinada , Humanos , Testes de Sensibilidade Microbiana , Modelos Teóricos , Método de Monte Carlo , Tigeciclina/farmacocinética , Distribuição Tecidual
3.
Clin Infect Dis ; 67(suppl_3): S317-S326, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496457

RESUMO

Background: Ethionamide is used to treat multidrug-resistant tuberculosis (MDR-TB). The antimicrobial pharmacokinetics/pharmacodynamics, the contribution of ethionamide to the multidrug regimen, and events that lead to acquired drug resistance (ADR) are unclear. Methods: We performed a multidose hollow fiber system model of tuberculosis (HFS-TB) study to identify the 0-24 hour area under the concentration-time curve (AUC0-24) to minimum inhibitory concentration (MIC) ratios that achieved maximal kill and ADR suppression, defined as target exposures. Ethionamide-resistant isolates underwent whole-genome and targeted Sanger sequencing. We utilized Monte Carlo experiments (MCEs) to identify ethionamide doses that would achieve the target exposures in 10000 patients with pulmonary tuberculosis. We also identified predictors of time-to-sputum conversion in Tanzanian patients on ethionamide- and levofloxacin-based regimens using multivariate adaptive regression splines (MARS). Results: An AUC0-24/MIC >56.2 was identified as the target exposure in the HFS-TB. Early efflux pump induction to ethionamide monotherapy led to simultaneous ethambutol and isoniazid ADR, which abrogated microbial kill of an isoniazid-ethambutol-ethionamide regimen. Genome sequencing of isolates that arose during ethionamide monotherapy revealed mutations in both ethA and embA. In MCEs, 20 mg/kg/day achieved the AUC0-24/MIC >56.2 in >95% of patients, provided the Sensititre assay MIC was <2.5 mg/L. In the clinic, MARS revealed that ethionamide Sensititre MIC had linear negative relationships with time-to-sputum conversion until an MIC of 2.5 mg/L, above which patients with MDR-TB failed combination therapy. Conclusions: Ethionamide is an important contributor to MDR-TB treatment regimens, at Sensititre MIC <2.5 mg/L. Suboptimal ethionamide exposures led to efflux pump-mediated ADR.


Assuntos
Antituberculosos/farmacocinética , Etionamida/farmacocinética , Isoniazida/farmacocinética , Levofloxacino/farmacocinética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Antituberculosos/administração & dosagem , Etionamida/administração & dosagem , Humanos , Isoniazida/administração & dosagem , Levofloxacino/administração & dosagem , Método de Monte Carlo , Mutação , Escarro/microbiologia
4.
Clin Infect Dis ; 67(suppl_3): S274-S283, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496459

RESUMO

Background: Gatifloxacin is used for the treatment of multidrug-resistant tuberculosis (MDR-TB). The optimal dose is unknown. Methods: We performed a 28-day gatifloxacin hollow-fiber system model of tuberculosis (HFS-TB) study in order to identify the target exposures associated with optimal kill rates and resistance suppression. Monte Carlo experiments (MCE) were used to identify the dose that would achieve the target exposure in 10000 adult patients with meningeal or pulmonary MDR-TB. The optimal doses identified were validated using probit analyses of clinical data from 2 prospective clinical trials of patients with pulmonary and meningeal tuberculosis. Classification and regression-tree (CART) analyses were used to identify the gatifloxacin minimum inhibitory concentration (MIC) below which patients failed or relapsed on combination therapy. Results: The target exposure associated with optimal microbial kill rates and resistance suppression in the HFS-TB was a 0-24 hour area under the concentration-time curve-to-MIC of 184. MCE identified an optimal gatifloxacin dose of 800 mg/day for pulmonary and 1200 mg/day for meningeal MDR-TB, and a clinical susceptibility breakpoint of MIC ≤ 0.5 mg/L. In clinical trials, CART identified that 79% patients failed therapy if MIC was >2 mg/L, but 98% were cured if MIC was ≤0.5 mg/L. Probit analysis of clinical data demonstrated a >90% probability of a cure in patients if treated with 800 mg/day for pulmonary tuberculosis and 1200 mg/day for meningeal tuberculosis. Doses ≤400 mg/day were suboptimal. Conclusions: Gatifloxacin doses of 800 mg/day and 1200 mg/day are recommended for pulmonary and meningeal MDR-TB treatment, respectively. Gatifloxacin has a susceptible dose-dependent zone at MICs 0.5-2 mg/L.


Assuntos
Antituberculosos/farmacocinética , Gatifloxacina/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Meníngea/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Humanos , Pulmão/microbiologia , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Estudos Prospectivos , Tuberculose Meníngea/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologia
5.
Clin Infect Dis ; 67(suppl_3): S293-S302, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496461

RESUMO

Background: Levofloxacin is used for the treatment of multidrug-resistant tuberculosis; however the optimal dose is unknown. Methods: We used the hollow fiber system model of tuberculosis (HFS-TB) to identify 0-24 hour area under the concentration-time curve (AUC0-24) to minimum inhibitory concentration (MIC) ratios associated with maximal microbial kill and suppression of acquired drug resistance (ADR) of Mycobacterium tuberculosis (Mtb). Levofloxacin-resistant isolates underwent whole-genome sequencing. Ten thousands patient Monte Carlo experiments (MCEs) were used to identify doses best able to achieve the HFS-TB-derived target exposures in cavitary tuberculosis and tuberculous meningitis. Next, we used an ensemble of artificial intelligence (AI) algorithms to identify the most important predictors of sputum conversion, ADR, and death in Tanzanian patients with pulmonary multidrug-resistant tuberculosis treated with a levofloxacin-containing regimen. We also performed probit regression to identify optimal levofloxacin doses in Vietnamese tuberculous meningitis patients. Results: In the HFS-TB, the AUC0-24/MIC associated with maximal Mtb kill was 146, while that associated with suppression of resistance was 360. The most common gyrA mutations in resistant Mtb were Asp94Gly, Asp94Asn, and Asp94Tyr. The minimum dose to achieve target exposures in MCEs was 1500 mg/day. AI algorithms identified an AUC0-24/MIC of 160 as predictive of microbiologic cure, followed by levofloxacin 2-hour peak concentration and body weight. Probit regression identified an optimal dose of 25 mg/kg as associated with >90% favorable response in adults with pulmonary tuberculosis. Conclusions: The levofloxacin dose of 25 mg/kg or 1500 mg/day was adequate for replacement of high-dose moxifloxacin in treatment of multidrug-resistant tuberculosis.


Assuntos
Antituberculosos/farmacocinética , Inteligência Artificial , Levofloxacino/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Algoritmos , Antituberculosos/administração & dosagem , Farmacorresistência Bacteriana Múltipla , Quimioterapia Combinada , Humanos , Levofloxacino/administração & dosagem , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Escarro/microbiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-29180526

RESUMO

The modern chemotherapy era started with Fleming's discovery of benzylpenicillin. He demonstrated that benzylpenicillin did not kill Mycobacterium tuberculosis In this study, we found that >64 mg/liter of static benzylpenicillin concentrations killed 1.16 to 1.43 log10 CFU/ml below starting inoculum of extracellular and intracellular M. tuberculosis over 7 days. When we added the ß-lactamase inhibitor avibactam, benzylpenicillin maximal kill (Emax) of extracellular log-phase-growth M. tuberculosis was 6.80 ± 0.45 log10 CFU/ml at a 50% effective concentration (EC50) of 15.11 ± 2.31 mg/liter, while for intracellular M. tuberculosis it was 2.42 ± 0.14 log10 CFU/ml at an EC50 of 6.70 ± 0.56 mg/liter. The median penicillin (plus avibactam) MIC against South African clinical M. tuberculosis strains (80% either multidrug or extensively drug resistant) was 2 mg/liter. We mimicked human-like benzylpenicillin and avibactam concentration-time profiles in the hollow-fiber model of tuberculosis (HFS-TB). The percent time above the MIC was linked to effect, with an optimal exposure of ≥65%. At optimal exposure in the HFS-TB, the bactericidal activity in log-phase-growth M. tuberculosis was 1.44 log10 CFU/ml/day, while 3.28 log10 CFU/ml of intracellular M. tuberculosis was killed over 3 weeks. In an 8-week HFS-TB study of nonreplicating persistent M. tuberculosis, penicillin-avibactam alone and the drug combination of isoniazid, rifampin, and pyrazinamide both killed >7.0 log10 CFU/ml. Monte Carlo simulations of 10,000 preterm infants with disseminated disease identified an optimal dose of 10,000 U/kg (of body weight)/h, while for pregnant women or nonpregnant adults with pulmonary tuberculosis the optimal dose was 25,000 U/kg/h, by continuous intravenous infusion. Penicillin-avibactam should be examined for effect in pregnant women and infants with drug-resistant tuberculosis, to replace injectable ototoxic and teratogenic second-line drugs.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Penicilina G/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Adulto , Compostos Azabicíclicos/uso terapêutico , Linhagem Celular , Combinação de Medicamentos , Feminino , Humanos , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana/métodos , Método de Monte Carlo , Gravidez , Pirazinamida/uso terapêutico , Rifampina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA