Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatrics ; 153(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38374808

RESUMO

Observed changes in temperature, precipitation patterns, sea level, and extreme weather are destabilizing major determinants of human health. Children are at higher risk of climate-related health burdens than adults because of their unique behavior patterns; developing organ systems and physiology; greater exposure to air, food, and water contaminants per unit of body weight; and dependence on caregivers. Climate change harms children through numerous pathways, including air pollution, heat exposure, floods and hurricanes, food insecurity and nutrition, changing epidemiology of infections, and mental health harms. As the planet continues to warm, climate change's impacts will worsen, threatening to define the health and welfare of children at every stage of their lives. Children who already bear higher burden of disease because of living in low-wealth households and communities, lack of access to high quality education, and experiencing racism and other forms of unjust discrimination bear greater risk of suffering from climate change hazards. Climate change solutions, advanced through collaborative work of pediatricians, health systems, communities, corporations, and governments lead to immediate gains in child health and equity and build a foundation for generations of children to thrive. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health.


Assuntos
Saúde da Criança , Mudança Climática , Criança , Humanos , Nível de Saúde , Estado Nutricional
2.
Pediatrics ; 153(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105695

RESUMO

Buildings, parks, and roads are all elements of the "built environment," which can be described as the human-made structures that comprise the neighborhoods and communities where people live, work, learn, and recreate (https://www.epa.gov/smm/basic-information-about-built-environment). The design of communities where children and adolescents live, learn, and play has a profound impact on their health. Moreover, the policies and practices that determine community design and the built environment are a root cause of disparities in the social determinants of health that contribute to health inequity. An understanding of the links between the built environment and pediatric health will help to inform pediatricians' and other pediatric health care professionals' care for patients and advocacy on their behalf. This policy statement outlines community design solutions that can improve pediatric physical and mental health, and improve health equity. It describes opportunities for pediatricians and the health care sector to incorporate this knowledge in patient care, as well as to play a role in advancing a health-promoting built environment for all children and families. The accompanying technical report reviews the range of pediatric physical and mental health conditions influenced by the built environment, as well as historical and persistent effects of the built environment on health disparities.


Assuntos
Ambiente Construído , Características de Residência , Adolescente , Humanos , Criança , Planejamento Ambiental
3.
Pediatrics ; 153(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105697

RESUMO

Buildings, parks, and roads are all elements of the "built environment," which can be described as the human-made structures that comprise the neighborhoods and communities where people live, work, learn, and recreate (https://www.epa.gov/smm/basic-information-about-built-environment). The design of communities where children and adolescents live, learn, and play has a profound impact on their health. Moreover, the policies and practices that determine community design and the built environment are a root cause of disparities in the social determinants of health that contribute to health inequity. An understanding of the links between the built environment and pediatric health will help to inform pediatricians' and other pediatric health professionals' care for patients and advocacy on their behalf. This technical report describes the range of pediatric physical and mental health conditions influenced by the built environment, as well as historical and persistent effects of the built environment on health disparities. The accompanying policy statement outlines community design solutions that can improve pediatric health and health equity, including opportunities for pediatricians and the health care sector to incorporate this knowledge in patient care, as well as to play a role in advancing a health-promoting built environment for all children and families.


Assuntos
Ambiente Construído , Características de Residência , Adolescente , Humanos , Criança , Planejamento Ambiental
4.
Clin Orthop Relat Res ; 481(12): 2469-2480, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493467

RESUMO

BACKGROUND: Professional society conferences are integral to the medical profession. However, airline travel is a major contributor to greenhouse gas production, and the environmental impact of in-person attendance at an orthopaedic conference has yet to be described. With growing concern about the climate crisis, we sought to quantify the carbon footprint of in-person attendance to help potential attendees more consciously consider in-person attendance, inform strategies to minimize greenhouse gas emissions during travel to annual meetings, and increase awareness about and momentum for efforts in orthopaedic surgery to reduce the carbon footprint of society conferences. QUESTIONS/PURPOSES: (1) What was the magnitude of greenhouse gas production resulting from all-in-person 2019 American Orthopaedic Foot and Ankle Society (AOFAS) annual meeting attendance in Chicago, IL, USA? (2) What was the magnitude of greenhouse gas production resulting from the all-virtual 2020 AOFAS annual meeting, and how does it compare with the 2019 AOFAS annual meeting carbon footprint? (3) To what extent could an alternative in-person meeting model with four or seven hubs decrease greenhouse gas production resulting from round-trip air travel compared with the 2019 AOFAS annual meeting? METHODS: A list of the postal codes and countries of all 1271 registered participants attending the four-day 2019 AOFAS annual meeting in Chicago, IL, USA, was obtained from AOFAS headquarters. The 2019 conference was chosen because it was the last pre-COVID meeting and thus attendance was more likely to resemble that at prepandemic in-person conferences than more recent meetings because of pandemic travel restrictions. We estimated carbon dioxide-equivalent (CO 2 e) production from round-trip air travel using a publicly available internet-based calculator (Myclimate: https://co2.myclimate.org/en/flight_calculators/new ). Emissions produced by the conference venue, car travel, and hotel stays were estimated using published Environmental Protection Agency emission factors. To estimate emissions produced by the all-virtual 2020 AOFAS annual meeting (assuming an equal number of attendees as in 2019), we used the framework published by Faber and summed estimated network data transfer emissions, personal computer and monitor emissions, and server-related emissions. Using the 2019 registrant list, we modeled four-hub and seven-hub in-person meeting alternatives to determine potential decreased round-trip air travel greenhouse gas production. Meeting hub locations were selected by visualizing the geographic distribution of the 2019 registrants and selecting reasonable meeting locations that would minimize air travel for the greatest number of attendees. Registrants were assigned to the nearest hub location. Myclimate was again used to estimate CO 2 e production for round-trip air travel for the hub meeting models. RESULTS: The total estimated emissions of the all-in-person 2019 AOFAS annual meeting (when accounting for travel, conference space, and hotel stays) was 1565 tons CO 2 e (median 0.61 tons per attendee, range 0.02 to 7.7 tons). The total estimated emissions of the all-virtual 2020 meeting (when accounting for network data transfer emissions, personal computer and monitor emissions, and server-related emissions) was 34 tons CO 2 e (median 0.03 tons per attendee). This corresponds to a 97.8% decrease in CO 2 e emissions compared with the in-person conference. The model of a four-hub in-person meeting alternative with meetings in Chicago, Santiago, London, and Tokyo predicted an estimated 54% decrease in CO 2 e emissions from round-trip air travel. The seven-hub meeting model with meetings in Chicago; Washington, DC; Dallas; Los Angeles; Santiago; London; and Tokyo was predicted to diminish the CO 2 e emissions of round-trip air travel by an estimated 71%. CONCLUSION: The 2019 AOFAS annual meeting had an enormous carbon footprint and resulted in many individuals exceeding their annual allotted carbon budget (2.5 tons) according to the Paris Agreement. Hosting the meeting virtually greatly reduced the annual meeting carbon footprint, and our hub-based meeting models identified potential in-person alternatives for reducing the carbon footprint of conference attendance. CLINICAL RELEVANCE: Professional societies must consider our responsibility to decarbonizing the healthcare sector by considering innovative approaches-perhaps such as our multihub proposals-to decarbonize carbon-intensive annual meetings without stalling academic progress.


Assuntos
Gases de Efeito Estufa , Ortopedia , Estados Unidos , Humanos , Gastos em Saúde , Tornozelo , Pegada de Carbono
7.
Sci Adv ; 8(5): eabl4183, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119921

RESUMO

The lives lost and economic costs of viral zoonotic pandemics have steadily increased over the past century. Prominent policymakers have promoted plans that argue the best ways to address future pandemic catastrophes should entail, "detecting and containing emerging zoonotic threats." In other words, we should take actions only after humans get sick. We sharply disagree. Humans have extensive contact with wildlife known to harbor vast numbers of viruses, many of which have not yet spilled into humans. We compute the annualized damages from emerging viral zoonoses. We explore three practical actions to minimize the impact of future pandemics: better surveillance of pathogen spillover and development of global databases of virus genomics and serology, better management of wildlife trade, and substantial reduction of deforestation. We find that these primary pandemic prevention actions cost less than 1/20th the value of lives lost each year to emerging viral zoonoses and have substantial cobenefits.

8.
Acad Med ; 97(2): 188-192, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432714

RESUMO

Medical schools face a challenge when trying to include new topics, such as climate change and health (CCH), in their curricula because of competing demands from more traditional biomedical content. At the same time, an understanding of CCH topics is crucial for physicians as they have clear implications for clinical practice and health care delivery. Although some medical schools have begun to incorporate CCH into curricula, the inclusion usually lacks a comprehensive framework for content and implementation. The authors propose a model for integrating CCH into medical school curricula using a practical, multistakeholder approach designed to mitigate competition for time with existing content by weaving meaningful CCH examples into current curricular activities. After the authors identified stakeholders to include in their curricular development working group, this working group determined the goals and desired outcomes of the curriculum; aligned those outcomes with the school's framework of educational objectives, competencies, and milestones; and strove to integrate CCH goals into as many existing curricular settings as possible. This article includes an illustration of the proposed model for one of the curricular goals (understanding the impacts of climate change on communities), with examples from the CCH curriculum integration that began in the fall of 2020 at the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University. The authors have found that this approach does minimize competition for time with existing content and allows mapping of content to existing curricular competencies and milestones, while encouraging a broad understanding of CCH in the context of individual patients, populations, and communities. This model for curricular integration can be applied to other topics such as social determinants of health, health equity, disability studies, and structural racism.


Assuntos
Mudança Climática , Currículo , Educação Médica/organização & administração , Modelos Educacionais , Faculdades de Medicina/organização & administração
9.
Environ Pollut ; 282: 117016, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848912

RESUMO

BACKGROUND: Kuwait and the Gulf region have a desert, hyper-arid and hot climate that makes outdoor air sampling challenging. The region is also affected by intense dust storms. Monitoring challenges from the harsh climate have limited data needed to inform appropriate regulatory actions to address air pollution in the region. OBJECTIVES: To compare gravimetric measurements with existing networks that rely on beta-attenuation measurements in a desert climate; determine the annual levels of PM2.5 and PM10 over a two-year period in Kuwait; assess compliance with air quality standards; and identify and quantify PM2.5 sources. METHODS: We custom-designed particle samplers that can withstand large quantities of dust without their inlet becoming overloaded. The samplers were placed in two populated residential locations, one in Kuwait City and another near industrial and petrochemical facilities in Ali Sabah Al-Salem (ASAS) to collect PM2.5 and PM10 samples for mass and elemental analysis. We used positive matrix factorization to identify PM2.5 sources and apportion their contributions. RESULTS: We collected 2339 samples during the period October 2017 through October 2019. The beta-attenuation method in measuring PM2.5 consistently exceeded gravimetric measurements, especially during dust events. The annual levels for PM2.5 in Kuwait City and ASAS were 41.6 ± 29.0 and 47.5 ± 27.6 µg/m3, respectively. Annual PM2.5 levels in Kuwait were nearly four times higher than the U.S. National Ambient Air Quality Standard. Regional pollution was a major contributor to PM2.5 levels in both locations accounting for 44% in Kuwait City and 46% in ASAS. Dust storms and re-suspended road dust were the second and third largest contributors to PM2.5, respectively. CONCLUSIONS: The premise that frequent and extreme dust storms make air quality regulation futile is dubious. In this comprehensive particulate pollution analysis, we show that the sizeable regional anthropogenic particulate sources warrant national and regional mitigation strategies to ensure compliance with air quality standards.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Poeira/análise , Monitoramento Ambiental , Kuweit , Malásia , Material Particulado/análise
15.
Pediatrics ; 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110165

RESUMO

American children eat relatively little fish and shellfish in comparison with other sources of animal protein, despite the health benefits that eating fish and shellfish may confer. At the same time, fish and shellfish may be sources of toxicants. This report serves to inform pediatricians about available research that elucidates health risks and benefits associated with fish and shellfish consumption in childhood as well as the sustainability of fish and shellfish harvests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA