Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37619405

RESUMO

Many food contact materials (FCMs) and reusable plastics in the food industry contain poly- and perfluoroalkyl substances (PFAS), a group of synthetic pollutants that are known to be potentially harmful for wildlife, humans, and the environment. PFAS may migrate from FCMs to food consumed by humans. As a replacement for plastics, often paper and other plant-based materials are used in commercial settings. This also applies to drinking straws, where plant-based and other presumably eco-friendly straws are increasingly used to reduce plastic pollution. In order to make these materials water-repellent, PFAS are added during manufacturing but can also already be present early in the supply chain due to the use of contaminated raw materials. In the present study, we examined the PFAS concentrations in 39 different brands of straws, made from five materials (i.e. paper, bamboo, glass, stainless steel, and plastic) commercially available on the Belgian market. We combined both targeted and suspect-screening approaches to evaluate a wide range of PFAS. PFAS were found to be present in almost all types of straws, except for those made of stainless steel. PFAS were more frequently detected in plant-based materials, such as paper and bamboo. We did not observe many differences between the types of materials, or the continents of origin. The presence of PFAS in plant-based straws shows that they are not necessarily biodegradable and that the use of such straws potentially contributes to human and environmental exposure of PFAS.


Assuntos
Fluorocarbonos , Aço Inoxidável , Humanos , Animais , Animais Selvagens , Comércio , Plásticos
2.
Environ Sci Pollut Res Int ; 29(5): 7853-7865, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34480314

RESUMO

Detrimental effects of chemical pollution-primarily caused by human activities-on aquatic ecosystems have increasingly gained attention. Because of its hydrophobic qualities, mercury is prone to easily bioaccumulate and biomagnify through the food chain, decreasing biodiversity and eventually also affecting humans. In the present study, accumulated mercury concentrations were measured in muscle and liver tissue of perch (Perca fluviatilis) and European eel (Anguilla anguilla) collected at 26 sampling locations in Flemish (Belgian) waterbodies, allowing a comparison of these species within a variety of environmental situations. Furthermore, effects of size and weight have been assessed, expected to influence accumulation and storage of pollutants. Mercury concentrations in perch ranged up to 1.7 µg g-1 dw (median: 0.29 µg g-1 dw) in muscle and from 0.02 to 0.77 µg g-1 dw (median: 0.11 µg g-1 dw) in liver tissue. For eel, these concentrations were between 0.07 and 1.3 µg g-1 dw (median: 0.39 µg g-1 dw) and between 0.08 and 1.4 µg g-1 dw (median: 0.55 µg g-1 dw) respectively. We found a correlation of accumulated mercury with length in perch, independent of location. Furthermore, a significant difference in accumulated mercury concentrations between the targeted species was measured, with the highest mean concentrations per dry weight in eel liver and muscle tissue. In perch, higher concentrations were found in muscle compared to liver tissue, while in eel, liver tissue showed the highest concentrations. These findings were further considered with concentrations corrected for lipid content, excluding the fat compartment, which is known to a hold negligible portion of the total and methyl mercury concentrations. This confirmed our previous conclusions, except for mercury concentrations in eel. Here there was no longer a significant difference between muscle and liver concentrations. Finally, health risk analyses revealed that only frequent consumption of local eel (> 71 g day-1) could pose risks to humans.


Assuntos
Mercúrio , Percas , Poluentes Químicos da Água , Animais , Bélgica , Ecossistema , Monitoramento Ambiental , Água Doce , Humanos , Fígado/química , Mercúrio/análise , Músculos/química , Medição de Risco , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 743: 140675, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32927526

RESUMO

The European eel is critically endangered. Although the quality of silver eels is essential for their reproduction, little is known about the effects of multiple contaminants on the spawning migration and the European eel management plan does not take this into account. To address this knowledge gap, we sampled 482 silver eels from 12 catchments across Europe and developed methods to assess three aspects of eel quality: muscular lipid content (N = 169 eels), infection with Anguillicola crassus (N = 482), and contamination by persistent organic pollutants (POPs, N = 169) and trace elements (TEs, N = 75). We developed a standardized eel quality risks index (EQR) using these aspects for the subsample of 75 female eels. Among 169 eels, 33% seem to have enough muscular lipids content to reach the Sargasso Sea to reproduce. Among 482 silver eels, 93% were infected by A. crassus at least once during their lifetime. All contaminants were above the limit of quantification, except the 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), Ag and V. The contamination by POPs was heterogeneous between catchments while TEs were relatively homogeneous, suggesting a multi-scale adaptation of management plans. The EQR revealed that eels from Warwickshire were most impacted by brominated flame-retardants and agricultural contaminants, those from Scheldt were most impacted by agricultural and construction activities, PCBs, coal burning, and land use, while Frémur eels were best characterized by lower lipid contents and high parasitic and BTBPE levels. There was a positive correlation between EQR and a human footprint index highlighting the capacity of silver eels for biomonitoring human activities and the potential impact on the suitability of the aquatic environment for eel population health. EQR therefore represents a step forward in the standardization and mapping of eel quality risks, which will help identify priorities and strategies for restocking freshwater ecosystems.


Assuntos
Anguilla , Retardadores de Chama , Bifenilos Policlorados/análise , Animais , Ecossistema , Enguias , Europa (Continente) , Feminino , Humanos
4.
Environ Int ; 36(4): 368-376, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20226530

RESUMO

Human exposure to brominated flame retardants (BFRs) varies widely throughout the world as it depends on country-related usage, production and legislation of these chemicals. US and UK exposure assessments show very diverse levels and patterns which in turn, are likely to differ from those in background exposed countries such as Belgium, where levels tend to be about an order of magnitude lower. The current study assessed human exposure to BFRs through the indoor and outdoor environment (e.g. dust, soil, and air) and food for all age groups in Flanders, Belgium. Most relevant food groups were identified based on a national food consumption survey and food items with Flemish origin were collected. Dust samples were collected using a standardized protocol in 43 homes and 10 offices throughout Flanders. Food, human milk and dust samples were analysed for their polybrominated diphenylethers (PBDE) and hexabromocyclodecane (HBCD) content using GC/MS and LC/MS-MS. An exposure model was developed including all analysed data, complemented with literature data. The model covered human exposure of infants, children and adults through human milk, food, dust/soil ingestion and air inhalation. Total human exposure was compared to the existing toxicological criteria and previous exposure estimates. In general, the exposure levels through human milk are consistent with those of a background exposed European population, whereas dust and food intake are at the low end of what has been reported in previous European intake assessments. Total average intake of SigmaHBCD and SigmaBDE(5) at 50th percentile (P50) levels by newborns equals 3.1 and 12.0ng/kg body weight (bw) day, respectively. This intake increases to 15.2 and 20.9ng/kgbwday for SigmaHBCD and SigmaBDE(5), for higher exposed newborns (95th percentile=P95 levels). Due to the limited database on health-based limit values for PBDEs and HBCD, it is difficult to assess the immediate health concern for any of the age groups, although the higher intake of newborns indicates the need for ongoing monitoring. For median exposed individuals, the average SigmaHBCD intake peaked at the age 3 to 6years with an intake of 6.59ng/kgbwday and declines to approximately 1ng/kgbwday at later age. SigmaBDE(5) intake exhibited a different profile compared to SigmaHBCD with maximal levels for newborns and a decline to approximately 0.7ng/kgbwday at adulthood.


Assuntos
Exposição Ambiental , Poluentes Ambientais/análise , Retardadores de Chama/análise , Contaminação de Alimentos , Adolescente , Adulto , Bélgica , Pré-Escolar , Feminino , Éteres Difenil Halogenados/análise , Humanos , Hidrocarbonetos Bromados/análise , Hidrocarbonetos Bromados/toxicidade , Lactente , Recém-Nascido , Modelos Estatísticos , Medição de Risco , Adulto Jovem
5.
Environ Pollut ; 157(11): 3098-105, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19524344

RESUMO

The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way.


Assuntos
Arsênio/análise , Besouros/química , Ecossistema , Monitoramento Ambiental/métodos , Isópodes/química , Metais Pesados/análise , Oligoquetos/química , Animais , Arsênio/metabolismo , Besouros/metabolismo , Isópodes/metabolismo , Metais Pesados/metabolismo , Oligoquetos/metabolismo
6.
Environ Toxicol Chem ; 23(2): 443-54, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14982393

RESUMO

First-stage larvae of the midge Chironomus riparius were exposed in small enclosures at 19 sites located in three different river basins in Flanders (Belgium). Sediments were sampled and sieved at 200 microm at all exposure sites. A layer of approximately 2 cm of sediment was placed in each cage and 100 midge larvae were added. Cages were placed in watercourses where resident midge larvae were present. Accumulation of Cd, Cr, Cu, Pb, Ni, and Zn was determined after four weeks of exposure when larvae had reached the fourth stage. Comparing metal levels between caged and resident larvae revealed no significant differences. A significant correlation between metal levels in caged and resident larvae was found when all sites were considered. However, such correlation was low (r2 = 0.28) for Pb. The highly significant r2 values found for Cu and Ni probably were due to only one site. Metal levels in tissue were related to levels in water and sediment, taking into account some sediment characteristics (particle size distribution and organic carbon) and oxygen level in the water. To determine the relative importance of these different sediment factors contributing to the variation in metal accumulation by the chironomids, nonlinear regression models were constructed. With the models used, 56.1, 32.2, and 57.4% of the variation for Cd, Pb, and Zn, respectively, could be described. None and 26.9% of the variation could be described for Cu and Ni, respectively. Among the environmental factors, organic carbon and oxygen levels in water were important in describing the accumulation of metals.


Assuntos
Chironomidae/metabolismo , Sedimentos Geológicos/análise , Metais Pesados/análise , Metais Pesados/farmacocinética , Modelos Biológicos , Análise de Variância , Animais , Bélgica , Bioensaio , Disponibilidade Biológica , Larva/metabolismo , Oxigênio/análise , Análise de Regressão , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA