Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Physiol ; 12: 705222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603074

RESUMO

Subject-specific mathematical models for prediction of physiological parameters such as blood volume, cardiac output, and blood pressure in response to hemorrhage have been developed. In silico studies using these models may provide an effective tool to generate pre-clinical safety evidence for medical devices and help reduce the size and scope of animal studies that are performed prior to initiation of human trials. To achieve such a goal, the credibility of the mathematical model must be established for the purpose of pre-clinical in silico testing. In this work, the credibility of a subject-specific mathematical model of blood volume kinetics intended to predict blood volume response to hemorrhage and fluid resuscitation during fluid therapy was evaluated. A workflow was used in which: (i) the foundational properties of the mathematical model such as structural identifiability were evaluated; (ii) practical identifiability was evaluated both pre- and post-calibration, with the pre-calibration results used to determine an optimal splitting of experimental data into calibration and validation datasets; (iii) uncertainty in model parameters and the experimental uncertainty were quantified for each subject; and (iv) the uncertainty was propagated through the blood volume kinetics model and its predictive capability was evaluated via validation tests. The mathematical model was found to be structurally identifiable. Pre-calibration identifiability analysis led to splitting the 180 min of time series data per subject into 50 and 130 min calibration and validation windows, respectively. The average root mean squared error of the mathematical model was 12.6% using the calibration window of (0 min, 50 min). Practical identifiability was established post-calibration after fixing one of the parameters to a nominal value. In the validation tests, 82 and 75% of the subject-specific mathematical models were able to correctly predict blood volume response when predictive capability was evaluated at 180 min and at the time when amount of infused fluid equals fluid loss.

2.
PLoS One ; 16(4): e0251001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930095

RESUMO

Physiological closed-loop controlled (PCLC) medical devices are complex systems integrating one or more medical devices with a patient's physiology through closed-loop control algorithms; introducing many failure modes and parameters that impact performance. These control algorithms should be tested through safety and efficacy trials to compare their performance to the standard of care and determine whether there is sufficient evidence of safety for their use in real care setting. With this aim, credible mathematical models have been constructed and used throughout the development and evaluation phases of a PCLC medical device to support the engineering design and improve safety aspects. Uncertainties about the fidelity of these models and ambiguities about the choice of measures for modeling performance need to be addressed before a reliable PCLC evaluation can be achieved. This research develops tools for evaluating the accuracy of physiological models and establishes fundamental measures for predictive capability assessment across different physiological models. As a case study, we built a refined physiological model of blood volume (BV) response by expanding an original model we developed in our prior work. Using experimental data collected from 16 sheep undergoing hemorrhage and fluid resuscitation, first, we compared the calibration performance of the two candidate physiological models, i.e., original and refined, using root-mean-squared error (RMSE), Akiake information criterion (AIC), and a new multi-dimensional approach utilizing normalized features extracted from the fitting error. Compared to the original model, the refined model demonstrated a significant improvement in calibration performance in terms of RMSE (9%, P = 0.03) and multi-dimensional measure (48%, P = 0.02), while a comparable AIC between the two models verified that the enhanced calibration performance in the refined model is not due to data over-fitting. Second, we compared the physiological predictive capability of the two models under three different scenarios: prediction of subject-specific steady-state BV response, subject-specific transient BV response to hemorrhage perturbation, and leave-one-out inter-subject BV response. Results indicated enhanced accuracy and predictive capability for the refined physiological model with significantly larger proportion of measurements that were within the prediction envelope in the transient and leave-one-out prediction scenarios (P < 0.02). All together, this study helps to identify and merge new methods for credibility assessment and physiological model selection, leading to a more efficient process for PCLC medical device evaluation.


Assuntos
Sistemas de Apoio a Decisões Clínicas/normas , Equipamentos e Provisões/normas , Hidratação/métodos , Hemorragia/terapia , Ressuscitação/métodos , Avaliação da Tecnologia Biomédica/métodos , Algoritmos , Animais , Volume Sanguíneo , Modelos Teóricos , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA