Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Saudi Pharm J ; 31(7): 1317-1326, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37323919

RESUMO

An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the simultaneous quantitation of doxorubicin (DOX) and sorafenib (SOR) in rat plasma. Chromatographic separation was performed using a reversed-phase column C18 (1.7 µm, 1.0 × 100 mm Acquity UPLC BEH™). The gradient mobile phase system consisted of water containing 0.1% acetic acid (mobile phase A) and methanol (mobile phase B) with a flow rate of 0.40 mL/min over 8 min. Erlotinib (ERL) was used as an internal standard (IS). The quantitation of conversion of [M + H]+, which was the protonated precursor ion, to the corresponding product ions was performed using multiple reaction monitoring (MRM) with a mass-to-charge ratio (m/z) of 544 > 397.005 for DOX, 465.05 > 252.03 for SOR, and 394 > 278 for the IS. Different parameters were used to validate the method including accuracy, precision, linearity, and stability. The developed UPLC-MS/MS method was linear over the concentration ranges of 9-2000 ng/mL and 7-2000 ng/mL with LLOQ of 9 and 7 ng/mL for DOX and SOR, respectively. The intra-day and inter-day accuracy, expressed as % relative standard deviation (RSD%), was below 10% for both DOX and SOR in all QC samples that have drug concentrations above the LLOQ. The intra-day and inter-day precision, expressed as percent relative error (Er %), was within the limit of 15.0% for all concentrations above LLOQ. Four groups of Wistar rats (250-280 g) were used to conduct the pharmacokinetic study. Group I received a single intraperitoneal (IP) injection of DOX (5 mg/kg); Group II received a single oral dose of SOR (40 mg/kg), Group III received a combination of both drugs; and Group IV received sterile water for injection IP and 0.9% w/v sodium chloride solution orally to serve as a control. Non-compartmental analysis was used to calculate the different pharmacokinetic parameters. Data revealed that coadministration of DOX and SOR altered some of the pharmacokinetic parameters of both agents and resulted in an increase in the Cmax and AUC and reduction in the apparent clearance (CL/F). In conclusion, our newly developed method is sensitive, specific, and can reliably be used to simultaneously determine DOX and SOR concentrations in rat plasma. Moreover, the results of the pharmacokinetic study suggest that coadministration of DOX and SOR might cause an increase in exposure of both drugs.

2.
AAPS PharmSciTech ; 17(4): 978-87, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26729529

RESUMO

In this study, we investigated whether tacrolimus extracted and purified from the commercial capsules (Prograf® 5 mg) have retained its original quality and activity beyond the capsules expiration date in order to be reused for research purposes after extraction. High-performance liquid chromatography (HPLC) assay method was developed and validated for the quantification of tacrolimus, using cyclosporine A as an internal standard (IS). Moreover, a combination of analytical methods, including nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to assess the quality of extracted/purified tacrolimus. Suppression of murine peripheral-blood mononuclear cells (PBMC) proliferation and the levels of interleukin-2 (IL-2) and interferon gamma (IFN-γ) were also assessed. The data obtained showed no detectable differences in the quality profile between the authentic sample and extracted drug. Also, the results showed that the extracted/purified tacrolimus was able to suppress T cell proliferation, induced by concanavalin A, indicating the retained pharmacological activity. We proved that tacrolimus extracted/purified from expired Prograf® capsuled retains its purity and immunosuppressive activity and can be reused for research and possibly in pharmaceutical manufacturing.


Assuntos
Cápsulas/química , Cápsulas/farmacologia , Tacrolimo/química , Tacrolimo/farmacologia , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ciclosporina/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Imunossupressores/química , Imunossupressores/farmacologia , Interferon gama/metabolismo , Interleucina-2/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
3.
Eur J Pharm Biopharm ; 75(2): 90-5, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20332028

RESUMO

The aim of this study was to assess the potential of polymeric micelles to solubilize valspodar and modify its pharmacokinetics following intravenous and oral administration in rat. Drug-loaded methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) micellar solutions were prepared and administered either intravenously or orally to healthy Sprague-Dawley rats. Plasma pharmacokinetic parameters of valspodar in its polymeric micellar formulation were compared to its clinical formulation, which uses Cremophor EL and ethanol as solubilizing agents. High loading level was achieved for valspodar in PEO-b-PCL leading to an aqueous solubility of 2.8 mg/mL. Following i.v. administration (5 mg/kg), valspodar in the PEO-b-PCL micelles provided significantly higher (approximately 77%) plasma AUC compared to the Cremophor EL formulation. The PEO-b-PCL micelles also significantly decreased the volume of distribution (Vd(ss)) and clearance (CL) of valspodar by nearly 49% and 34%, respectively. After oral administration (10 mg/kg), the average C(max) were similar for both formulations and were both reached at approximately 2 h. The plasma unbound fraction of valspodar in the polymeric micellar formulation was significantly lower than control (8.27% versus 14.85%). Our results show that PEO-b-PCL micelles can efficiently solubilize valspodar and favorably modify its pharmacokinetic profile in rat after i.v. administration by decreasing the CL and Vd.


Assuntos
Ciclosporinas/farmacocinética , Portadores de Fármacos/química , Poliésteres/química , Administração Oral , Animais , Área Sob a Curva , Ciclosporinas/administração & dosagem , Etanol/química , Excipientes/química , Glicerol/análogos & derivados , Glicerol/química , Injeções Intravenosas , Masculino , Micelas , Polímeros/química , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Solubilidade , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA