Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioresour Technol ; 384: 129250, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37286046

RESUMO

Due to resource scarcity, current industrial systems are switching from waste treatment, such as wastewater treatment and biomass, to resource recovery (RR). Biofuels, manure, pesticides, organic acids, and other bioproducts with a great market value can be produced from wastewater and activated sludge (AS). This will not only help in the transition from a linear economy to a circular economy, but also contribute to sustainable development. However, the cost of recovering resources from wastewater and AS to produce value-added products is quite high as compared to conventional treatment methods. In addition, most antioxidant technologies remain at the laboratory scale that have not yet reached the level at industrial scale. In order to promote the innovation of resource recovery technology, the various methods of treating wastewater and AS to produce biofuels, nutrients and energy are reviewed, including biochemistry, thermochemistry and chemical stabilization. The limitations of wastewater and AS treatment methods are prospected from biochemical characteristics, economic and environmental factors. The biofuels derived from third generation feedstocks, such as wastewater are more sustainable. Microalgal biomass are being used to produce biodiesel, bioethanol, biohydrogen, biogas, biooils, bioplastics, biofertilizers, biochar and biopesticides. New technologies and policies can promote a circular economy based on biological materials.


Assuntos
Microalgas , Águas Residuárias , Esgotos , Biocombustíveis , Biomassa
2.
Food Res Int ; 164: 112318, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737911

RESUMO

Filamentous fungi serve as potential candidates in the production of different value-added products. In the context of food, there are several advantages of using filamentous fungi for food. Among the main advantages is that the fungal biomass used food not only meets basic nutritional requirements but that it is also rich in protein, low in fat, and free of cholesterol. This speaks to the potential of filamentous fungi in the production of food that can substitute animal-derived protein sources such as meat. Moreover, life-cycle analyses and techno-economic analyses reveal that fungal proteins perform better than animal-derived proteins in terms of land use efficiency as well as global warming. The present article provides an overview of the potential of filamentous fungi as a source of food and food supplements. The commercialization potential as well as social, legal and safety issues of fungi-based food products are discussed.


Assuntos
Dieta Vegana , Fungos , Animais , Humanos , Suplementos Nutricionais , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Aquecimento Global
3.
Environ Pollut ; 323: 121274, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804140

RESUMO

Wastewater management has emerged as an uprising concern that demands immediate attention from environmentalists worldwide. Indiscriminate and irrational release of industrial and poultry wastes, sewage, pharmaceuticals, mining, pesticides, fertilizers, dyes and radioactive wastes, contribute immensely to water pollution. This has led to the aggravation of critical health concerns as evident from the uprising trends of antimicrobial resistance, and the presence of xenobiotics and pollutant traces in humans and animals due to the process of biomagnification. Therefore, the development of reliable, affordable and sustainable technologies for the supply of fresh water is the need of the hour. Conventional wastewater treatment often involves physical, chemical, and biological processes to remove solids from the effluent, including colloids, organic matter, nutrients, and soluble pollutants (metals, organics). Synthetic biology has been explored in recent years, incorporating both biological and engineering concepts to refine existing wastewater treatment technologies. In addition to outlining the benefits and drawbacks of the current technologies, this review addresses novel wastewater treatment techniques, especially those using dedicated rational design and engineering of organisms and their constituent parts. Furthermore, the review hypothesizes designing a multi-bedded wastewater treatment plant that is highly cost-efficient, sustainable and requires easy installation and handling. The novel setup envisages removing all the major wastewater pollutants, providing water fit for household, irrigation and storage purposes.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Análise Custo-Benefício , Esgotos/química , Purificação da Água/métodos , Poluentes Químicos da Água/análise
4.
Environ Res ; 207: 112202, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655607

RESUMO

Nowadays, nanoparticles (NPs) and nanomaterials (NMs) are used extensively in various streams such as medical science, solar energy, drug delivery, water treatment, and detection of persistent pollutants. Intensive synthesis of NPs/NMs carried out via physico-chemical technologies is deteriorating the environment globally. Therefore, an urgent need to adopt cost-effective and green technologies to synthesize NPs/NMs by recycling of secondary waste resources is highly required. Environmental wastes such as metallurgical slag, electronics (e-waste), and acid mine drainage (AMD) are rich sources of metals to produce NPs. This concept can remediate the environment on the one hand and the other hand, it can provide a future roadmap for economic benefits at industrial scale operations. The waste-derived NPs will reduce the industrial consumption of limited primary resources. In this review article, green emerging technologies involving lignocellulosic waste to synthesize the NPs from the waste streams and the role of potential microorganisms such as microalgae, fungi, yeast, bacteria for the synthesis of NPs have been discussed. A critical insight is also given on use of recycling technologies and the incorporation of NMs in the membrane bioreactors (MBRs) to improve membrane functioning and process performance. Finally, this study aims to mitigate various persisting scientific and technological challenges for the safe disposal and recycling of organic and inorganic waste for future use in the circular economy.


Assuntos
Nanopartículas , Nanoestruturas , Reatores Biológicos , Metalurgia , Reciclagem
5.
Bioresour Technol ; 344(Pt B): 126241, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34756981

RESUMO

Lignocellulosic biomass has been emerging as a biorefinery precursor for variety of biofuels, platform chemicals and biomaterials because of its specific surface morphology, exceptional physical, chemical and biological characteristics. The selection of proper raw materials, integration of nano biotechnological aspects, and designing of viable processes are important to attain a cost-effective route for the development of valuable end products. Lignocellulose-based materials can prove to be outstanding in terms of techno-economic viability, as well as being environmentally friendly and reducing effluent load. This review should facilitate the identification of better lignocellulosic sources, advanced pretreatments, and production of value-added products in order to boost the future industries in a cleaner and safer way.


Assuntos
Materiais Biocompatíveis , Lignina , Biocombustíveis , Biomassa , Análise Custo-Benefício
6.
Bioengineered ; 12(2): 10269-10301, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34709979

RESUMO

Biochar's ability to mediate and facilitate microbial contamination degradation, as well as its carbon-sequestration potential, has sparked interest in recent years. The scope, possible advantages (economic and environmental), and future views are all evaluated in this review. We go over the many designed processes that are taking place and show why it is critical to look into biochar production for resource recovery and the role of bioengineered biochar in waste recycling. We concentrate on current breakthroughs in the fields of engineered biochar application techniques to systematically and sustainable technology. As a result, this paper describes the use of biomass for biochar production using various methods, as well as its use as an effective inclusion material to increase performance. The impact of biochar amendments on microbial colonisation, direct interspecies electron transfer, organic load minimization, and buffering maintenance is explored in detail. The majority of organic and inorganic (heavy metals) contaminants in the environment today are caused by human activities, such as mining and the use of chemical fertilizers and pesticides, which can be treated sustainably by using engineered biochar to promote the establishment of a sustainable engineered process by inducing the circular bioeconomy.


Assuntos
Bioengenharia/economia , Carvão Vegetal/economia , Bactérias/enzimologia , Biodegradação Ambiental , Reciclagem , Resíduos/análise
7.
Bioresour Technol ; 98(14): 2742-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17092709

RESUMO

The present study was directed to the production of N-acetyl-D-glucosamine using endochitinase and chitobiase from fungal cultures in solid culturing. Fifteen fungal strains were evaluated for endochitinase and chitobiase production under solid-state fermentation using agro-industrial residues, of which Penicillium aculeatum NRRL 2129 showed maximum endochitinase activity whereas Trichoderma harzianum TUBF 927 showed maximum chitobiase activity. Eleven substrates, alone and in combination with chitin, were evaluated for the enzyme production. Optimization of physico-chemical parameters such as incubation period and initial moisture content, and nutritional parameters such as chitin source, inorganic and organic nitrogen sources, were carried out. Optimization resulted in more than 3-fold increase in endochitinase production (from 3.5 to 12.53 U/g dry weight of substrate) and about 1.5-fold increase in chitobiase production (from 1.6 to 2.25 U/g dry weight of substrate). Studies on the degradation of colloidal chitin to N-acetyl-D-glucosamine showed improved efficiency when endochitinase and chitobiase were used in combination.


Assuntos
Acetilglucosamina/biossíntese , Acetilglucosaminidase/biossíntese , Quitina/metabolismo , Quitinases/biossíntese , Fermentação/fisiologia , Acetilglucosamina/economia , Beauveria/enzimologia , Coloides/metabolismo , Conservação dos Recursos Naturais , Hidrólise , Penicillium/enzimologia , Trichoderma/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA