Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Geochem Health ; 46(4): 125, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483680

RESUMO

Sydney estuary catchment supports the largest city in Australia and provides essential eco-social and environmental services; however, the region has been influenced by extensive anthropogenic modification. Soil metal concentrations in the catchment had been studied previously; however, the current investigation was designed to determine the risk posed by these contaminants to human health. Soil metal concentrations were higher than observed in most global capitals and increased substantially in the south and south-east of the catchment and close to the central business district. Road-side soils and road dust contained the highest concentration of metals in the catchment. Lead in catchment soils was closely related to traffic density and sourced from the historic use of Pb in petrol. A human health assessment indicated that soil Cd, Ni and Zn posed no non-carcinogenic risk (NCR), or carcinogenic risk (CR) for children, or adults in Sydney estuary catchment and that Cu and Cr may pose minor NCR for children. Vehicle-related Pb raised the greatest human health risk in catchment soils and may pose NCR at 32% and 4.3% of sites for children and adults, respectively. Inconsistent analytical techniques used in CR and NCR evaluations produce incomparable assessments and a consistent` methodology is suggested to improve interpretation. Human health risk may well be higher than commonly calculated due to pollutants present in urban soil not being included in assessments.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Criança , Adulto , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Metais Pesados/análise , Estuários , Chumbo , Solo , Austrália , Carcinógenos/análise , Medição de Risco/métodos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , China
2.
J Hazard Mater ; 465: 133096, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061125

RESUMO

Sydney Harbour (Australia). is one of the most metal-contaminated in the world and sediments are toxic over large areas. The major source of metals is stormwater, however there remains considerable debate regarding the source of metals in water entering the estuary. The current review and critical assessment of a large source of data accumulated from over three decades of research, supplemented by global studies, identified road-derived metals (RDMs) as the chief contributor of metals to stormwater and consequently to pollution of the estuary. Roads comprise almost 25% of a typical urban catchment and generate a considerable metal load from highly effective impervious surfaces and RDM is transported directly to the adjacent receiving basin with enhanced connectivity. In Sydney, industrial waste is delivered to the sewage system and is disposed of offshore, leaving RDM as a major contributor of metals to the stormwater system and estuarine environment. RDMs are modelled to be hazardous to the ecology and human health (carcinogenic and non-carcinogenic diseases) in the catchment environment driven by high metal concentrations, small size and elevated bioavailability. Remediation of RDMs is complex, requiring extensive knowledge and an experienced management team. The enormous potential for water re-use is often neglected.

3.
Sci Total Environ ; 898: 165512, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442470

RESUMO

Soil lead (Pb) concentrations in Sydney estuary (Australia) catchment are substantially elevated and strongly associated with traffic networks. This study compared the health risk predictions of blood Pb levels (BLL) in children using the soil IEUBK model and an independent, non-carcinogenic human health risk (NCR) assessment using the soil US EPA 2002 model. The predictions by the two models were significantly correlated (p < 0.001) and showed similar spatial distributions, but the NCR model may be more stringent in protection of human health when exposed to soil Pb in relation to adverse health effect, as the warning soil Pb concentration from the BLL was 4.6-fold higher than that from the NCR. The empirical IEUBK model considers gastric phase adsorption only and of the three exposure pathways (ingestion, inhalation and dermal) assessed by the theoretical NCR model, ingestion was the major exposure route. The reason for the similarity in outcomes of the two models is unknown, however the close correlation may be due to broadly similar formulations and, or that neurological and non-carcinogenic risks may be related to the adverse effects of Pb on bodily function. Parallel studies of human health risk based on BLL and NCR models have not been attempted previously and this opportunity to compare results from the two health risk assessments employing the same soil metal data is therefore unique.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Humanos , Chumbo/análise , Exposição Ambiental/análise , Solo , Poluentes do Solo/análise , Medição de Risco , Metais Pesados/análise , Monitoramento Ambiental
4.
Chemosphere ; 310: 136760, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36243080

RESUMO

The quality of bottom sediments is a key factor for many functions of dam reservoirs, which include water supply, flood control and recreation. The aim of the study was to combine different pollution indices in a critical generic risk assessment of metal contamination of bottom sediments. Both geochemical and ecological indices reflected that sediment contamination was dominated by Zn, Pb and Cd. The ecological risk indices suggested a high riks for all three metals, whereas human health risks were high for Pb and Cd. An occasional local contamination of sediments with Cr and Ni was revealed, although at levels not expected to cause concerns about potential ecological or health risk. Sediments from the Rybnik reservoir for Cu only revealed a high potential ecological risk. EF turned to be as being the most useful, whereas TRI (∑TRI) was the most important ecological index. All multi-element indices suggested similar trends, indicating that Zn, Pb and Cd taken altogether had the greatest impact on the level of sediment contamination and posed the greatest potential ecological and health risks to organisms. The use of sequential BCR extraction and ecotoxicity analyses allowed for a multi-facetted generic risk assessment of metals in sediments of dam reservoirs.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Sedimentos Geológicos/química , Metais Pesados/análise , Rios/química , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Cádmio/análise , Chumbo/análise , Medição de Risco , China
5.
Environ Sci Pollut Res Int ; 27(35): 43685-43699, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32740842

RESUMO

Narrabeen Lagoon is recognized as an Intermittently Closed and Open Lake or Lagoon (ICOLL) and is the largest coastal lagoon (2.2 km2) in the Sydney metropolitan region. The catchment (53 km2) supports five major river systems, and land use comprises of 56% residential, 42% parkland and 2% light industry, commercial, hospital and education. An initial screening environmental assessment was undertaken using sedimentary metals to determine the magnitude of anthropogenic change and level of ecological risk posed by these contaminants. Results illustrated an unusual example of an estuary significantly influenced by human-induced change, but exhibiting minimal ecological risk. This anomaly was due to high anthropogenic metal concentrations in the fine fraction of surficial sediment, which was considerably diluted by abundant metal-poor coarse material resulting in reduced adverse ecological impact for total sediment. Predictive modelling to 2020 suggested that Pb concentrations will decline and Cu and Zn levels will increase slightly. Modelling of river discharge and analyses of fluvial sedimentary metals suggested stormwater derived from the most urbanized catchments and a major roadway combined with poor flushing explained surficial sediment metal distributions in the lagoon.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Austrália , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Poluentes Químicos da Água/análise
6.
Ecotoxicol Environ Saf ; 107: 284-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25011126

RESUMO

Mangrove forests act as a natural filter of land-derived wastewaters along industrialized tropical and sub-tropical coastlines and assist in maintaining a healthy living condition for marine ecosystems. Currently, these intertidal communities are under serious threat from heavy metal contamination induced by human activity associated with rapid urbanization and industrialization. Studies on the biotic responses of these plants to heavy metal contamination are of great significance in estuary management and maintaining coastal ecosystem health. The main objective of the present investigation was to assess the biotic response in Avicennia marina ecosystems to heavy metal contamination through the determination of metal concentrations in leaves, fine nutritive roots and underlying sediments collected in fifteen locations across Sydney Estuary (Australia). Metal concentrations (especially Cu, Pb and Zn) in the underlying sediments of A. marina were enriched to a level (based on Interim Sediment Quality Guidelines) at which adverse biological effects to flora could occasionally occur. Metals accumulated in fine nutritive roots greater than underlying sediments, however, only minor translocation of these metals to A. marina leaves was observed (mean translocation factors, TFs, for all elements <0.13, except for Mn). Translocation factors of essential elements (i.e., common plant micro-nutrients, Cu, Ni, Mn and Zn) were greater than non-essential elements (As, Cd, Co, Cr and Pb), suggesting that A. marina mangroves of this estuary selectively excluded non-essential elements, while regulating essential elements and limiting toxicity to plants. This study supports the notion that A. marina mangroves act as a phytostabilizer in this highly modified estuary thereby protecting the aquatic ecosystem from point or non-point sources of heavy metal contamination.


Assuntos
Avicennia/metabolismo , Ecossistema , Metais Pesados/metabolismo , Austrália , Avicennia/química , Avicennia/efeitos dos fármacos , Monitoramento Ambiental , Estuários , Sedimentos Geológicos/química , Metais Pesados/análise , Folhas de Planta/química , Raízes de Plantas/química
7.
Sci Total Environ ; 472: 1010-22, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24345861

RESUMO

Currently, coastal intertidal environments are under stress from increased contaminant loads due to urbanization and other anthropogenic disturbances. Mangrove habitats are abundant in tropical and sub-topical intertidal zones and frequently act as a metal bio-filter in estuarine systems. Mangrove reforestation is often considered as one of the management options to protect estuarine-marine habitats. The main objective of the present investigation was to assess the bio-indicator potential of Avicennia marina by determining heavy metal concentrations in pneumatophore (aerial root) tissues and ambient sediments from Sydney Estuary (Australia). We collected mangrove sediments and pneumatophores in fifteen locations covering five major embayments of the estuary for a detailed biogeochemical investigation. Metal concentrations in sediment were mostly above Australian interim sediment quality guidelines (ISQG)-Low and in few instances above ISQG-High values. Enrichment factors (EFs >6, especially of Cu, Pb and Zn) suggest "very severe" modification of sediment in Sydney Estuary in all but one embayment which was mainly due to rapid changes in land use in connection with urbanization. High bio-concentration factors (BCFs) were observed for Cu and Ni in comparison with other metals (i.e., As, Cd, Co, Cr, Pb and Zn). A strong, positive relationship between metals in sediments and pneumatophores suggests potential use of these tissues as a bio-indicator of estuarine contamination and that metals are entering the biotic environment. The study further highlights a positive role of mangroves in sequestering metals from sediments and the water column and thus protecting estuarine environments from pollution.


Assuntos
Avicennia/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Raízes de Plantas/química , Poluentes Químicos da Água/análise , Estuários , Queensland
8.
Sci Total Environ ; 463-464: 667-74, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23845858

RESUMO

The generation of acidity and subsequent mobilization of toxic metals induced by acid sulfate soils (ASSs) are known to cause severe environmental damage to many coastal wetlands and estuaries of Australia and worldwide. Mangrove ecosystems serve to protect coastal environments, but are increasingly threatened from such ASS-induced acidification due to variable hydrological conditions (i.e., inundation-desiccation cycles). However, the impact of such behaviors on trace metal distribution, bio-availability and accumulation in mangrove tissues, i.e., leaves and pneumatophores, are largely unknown. In this study, we examined how ASS-induced acidifications controlled trace metal distribution and bio-availability in gray mangrove (Avicennia marina) soils and in tissues in the Kooragang wetland, New South Wales, Australia. We collected mangrove soils, leaves and pneumatophores from a part of the wetland acidified from ASS (i.e., an affected site) for detailed biogeochemical studies. The results were compared with samples collected from a natural intertidal mangrove forest (i.e., a control site) located within the same wetland. Soil pH (mean: 5.90) indicated acidic conditions in the affected site, whereas pH was near-neutral (mean: 7.17) in the control site. The results did not show statistically significant differences in near-total and bio-available metal concentrations, except for Fe and Mn, between affected and control sites. Iron concentrations were significantly (p values≤0.001) greater in the affected site, whereas Mn concentrations were significantly (p values≤0.001) greater in the control site. However, large proportions of near-total metals were potentially bio-available in control sites. Concentrations of Fe and Ni were significantly (p values≤0.001) greater in leaves and pneumatophores of the affected sites, whereas Mn, Cu, Pb and Zn were greater in control sites. The degree of metal bio-accumulation in leaves and pneumatophores suggest contrasting hydrological behaviors and near-surface geochemical conditions favoring differential metal uptake by mangrove plants in the two sites.


Assuntos
Ecossistema , Solo/química , Oligoelementos/análise , Avicennia/química , Cobre/análise , Ferro/análise , Chumbo/análise , Manganês/análise , Níquel/análise , Folhas de Planta/química , Raízes de Plantas/química , Áreas Alagadas , Zinco/análise
9.
Environ Toxicol Chem ; 29(5): 1172-81, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20821555

RESUMO

Groundwater contaminated with volatile chlorinated hydrocarbons (VCHs) was identified as discharging to Penrhyn Estuary, an intertidal embayment of Botany Bay, New South Wales, Australia. A screening-level hazard assessment of surface water in Penrhyn Estuary identified an unacceptable hazard to marine organisms posed by VCHs. Given the limitations of hazard assessments, the present study conducted a higher-tier, quantitative probabilistic risk assessment using the joint probability curve (JPC) method that accounted for variability in exposure and toxicity profiles to quantify risk (delta). Risk was assessed for 24 scenarios, including four areas of the estuary based on three exposure scenarios (low tide, high tide, and both low and high tides) and two toxicity scenarios (chronic no-observed-effect concentrations [NOEC] and 50% effect concentrations [EC50]). Risk (delta) was greater at low tide than at high tide and varied throughout the tidal cycle. Spatial distributions of risk in the estuary were similar using both NOEC and EC50 data. The exposure scenario including data combined from both tides was considered the most accurate representation of the ecological risk in the estuary. When assessing risk using data across both tides, the greatest risk was identified in the Springvale tributary (delta=25%)-closest to the source area-followed by the inner estuary (delta=4%) and the Floodvale tributary (delta=2%), with the lowest risk in the outer estuary (delta=0.1%), farthest from the source area. Going from the screening level ecological risk assessment (ERA) to the probabilistic ERA changed the risk from unacceptable to acceptable in 50% of exposure scenarios in two of the four areas within the estuary. The probabilistic ERA provided a more realistic assessment of risk than the screening-level hazard assessment.


Assuntos
Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/toxicidade , Rios/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/toxicidade , Ecossistema , Monitoramento Ambiental , New South Wales , Oceanos e Mares , Ondas de Maré , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
10.
Integr Environ Assess Manag ; 5(2): 338-48, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19125544

RESUMO

Groundwater contaminated with a mixture of 14 volatile chlorinated hydrocarbons (VCHs) discharges to an estuarine embayment in Sydney, Australia. A screening-level hazard assessment identified a potential risk to aquatic organisms from surface water contaminated by the groundwater. Direct toxicity assessment of the groundwater was undertaken on 5 indigenous marine species to assess toxicity and derive a site-specific guideline. The testing included acute tests, subchronic tests on early life stages, and a chronic test. Test organisms included a microalga (Nitzschia closterium), an amphipod (Allorchestes compressa), a polychaete worm (Diopatra dentata), and sea urchin (Heliocidaris tuberculata) and oyster larvae (Saccostrea commercialis). Toxicity testing was undertaken in sealed containers to prevent loss of VCHs, and concentrations of VCHs were measured to accurately assess exposure concentrations. No observed effect concentration (NOEC) values varied from 1.56% dilution (1.11 mg total VCHs) to 50% dilution (45.5 mg total VCHs). EC50 values varied from 4.8% dilution (3.77 mg total VCHs) to more than 50% dilution (45.5 mg total VCHs). NOEC data were used to derive species sensitivity distributions (SSDs) and a site-specific guideline. SSDs were derived from Burr type III (including the Pareto) and log-normal distributions. The log-normal distribution represented the best fit, and because the Pareto distribution is a finite threshold model more suited to toxicants with a threshold mode of action, the log-normal SSD and the associated 95% trigger value (TV) of 830 microg/L of total VCHs, was adopted as the site-specific TV for the groundwater.


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Animais , Austrália , Eucariotos/efeitos dos fármacos , Invertebrados/efeitos dos fármacos , Volatilização , Água/química , Poluição Química da Água
11.
Environ Manage ; 29(6): 860-70, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11992176

RESUMO

Sediments in the Port Jackson estuary are polluted by a wide range of toxicants and concentrations are among the highest reported for any major harbor in the world. Sediment quality guidelines (SQGs), developed by the National Oceanographic and Atmospheric Administration (NOAA) in the United States are used to estimate possible adverse biological effects of sedimentary contaminants in Port Jackson to benthic animals. The NOAA guidelines indicate that Pb, Zn, DDD, and DDE are the most likely contaminants to cause adverse biological effects in Port Jackson. On an individual chemical basis, the detrimental effects due to these toxicants may occur over extensive areas of the harbor, i.e., about 40%, 30%, 15% and 50%, respectively. The NOAA SQGs can also be used to estimate the probability of sediment toxicity for contaminant mixtures by determining the number of contaminants exceeding an upper guideline value (effects range medium, or ERM), which predicts probable adverse biological effects. The exceedence approach is used in the current study to estimate the probability of sediment toxicity and to prioritize the harbour in terms of possible adverse effects on sediment-dwelling animals. Approximately 1% of the harbor is mantled with sediment containing more than ten contaminants exceeding their respective ERM concentrations and, based on NOAA data, these sediments have an 80% probability of being toxic. Sediment with six to ten contaminants exceeding their respective ERM guidelines extend over approximately 4% of the harbor and have a 57% probability of toxicity. These areas are located in the landward reaches of embayments in the upper and central harbor in proximity to the most industrialised and urbanized part of the catchment. Sediment in a further 17% of the harbor has between one and five exceedences and has a 32% probability of being toxic. The application of SQGs developed by NOAA has not been tested outside North America, and the validity of using them in Port Jackson has yet to be demonstrated. The screening approach adopted here is to use SQGs to identify contaminants of concern and to determine areas of environmental risk. The practical application and management implications of the results of this investigation are discussed.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Animais , Austrália , Ecossistema , Guias como Assunto , Humanos , Valores de Referência , Medição de Risco , Estados Unidos , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA