Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 31: 4149-4161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35700254

RESUMO

We consider the problem of obtaining image quality representations in a self-supervised manner. We use prediction of distortion type and degree as an auxiliary task to learn features from an unlabeled image dataset containing a mixture of synthetic and realistic distortions. We then train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem. We refer to the proposed training framework and resulting deep IQA model as the CONTRastive Image QUality Evaluator (CONTRIQUE). During evaluation, the CNN weights are frozen and a linear regressor maps the learned representations to quality scores in a No-Reference (NR) setting. We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models, even without any additional fine-tuning of the CNN backbone. The learned representations are highly robust and generalize well across images afflicted by either synthetic or authentic distortions. Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets. The implementations used in this paper are available at https://github.com/pavancm/CONTRIQUE.

2.
IEEE Trans Image Process ; 30: 4449-4464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33856995

RESUMO

Recent years have witnessed an explosion of user-generated content (UGC) videos shared and streamed over the Internet, thanks to the evolution of affordable and reliable consumer capture devices, and the tremendous popularity of social media platforms. Accordingly, there is a great need for accurate video quality assessment (VQA) models for UGC/consumer videos to monitor, control, and optimize this vast content. Blind quality prediction of in-the-wild videos is quite challenging, since the quality degradations of UGC videos are unpredictable, complicated, and often commingled. Here we contribute to advancing the UGC-VQA problem by conducting a comprehensive evaluation of leading no-reference/blind VQA (BVQA) features and models on a fixed evaluation architecture, yielding new empirical insights on both subjective video quality studies and objective VQA model design. By employing a feature selection strategy on top of efficient BVQA models, we are able to extract 60 out of 763 statistical features used in existing methods to create a new fusion-based model, which we dub the VIDeo quality EVALuator (VIDEVAL), that effectively balances the trade-off between VQA performance and efficiency. Our experimental results show that VIDEVAL achieves state-of-the-art performance at considerably lower computational cost than other leading models. Our study protocol also defines a reliable benchmark for the UGC-VQA problem, which we believe will facilitate further research on deep learning-based VQA modeling, as well as perceptually-optimized efficient UGC video processing, transcoding, and streaming. To promote reproducible research and public evaluation, an implementation of VIDEVAL has been made available online: https://github.com/vztu/VIDEVAL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA