Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Genet Med ; 21(5): 1100-1110, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287922

RESUMO

PURPOSE: Clinical sequencing emerging in health care may result in secondary findings (SFs). METHODS: Seventy-four of 6240 (1.2%) participants who underwent genome or exome sequencing through the Clinical Sequencing Exploratory Research (CSER) Consortium received one or more SFs from the original American College of Medical Genetics and Genomics (ACMG) recommended 56 gene-condition pair list; we assessed clinical and psychosocial actions. RESULTS: The overall adjusted prevalence of SFs in the ACMG 56 genes across the CSER consortium was 1.7%. Initially 32% of the family histories were positive, and post disclosure, this increased to 48%. The average cost of follow-up medical actions per finding up to a 1-year period was $128 (observed, range: $0-$678) and $421 (recommended, range: $141-$1114). Case reports revealed variability in the frequency of and follow-up on medical recommendations patients received associated with each SF gene-condition pair. Participants did not report adverse psychosocial impact associated with receiving SFs; this was corroborated by 18 participant (or parent) interviews. All interviewed participants shared findings with relatives and reported that relatives did not pursue additional testing or care. CONCLUSION: Our results suggest that disclosure of SFs shows little to no adverse impact on participants and adds only modestly to near-term health-care costs; additional studies are needed to confirm these findings.


Assuntos
Testes Genéticos/economia , Achados Incidentais , Sequenciamento Completo do Genoma/ética , Adulto , Tomada de Decisões/ética , Revelação , Exoma , Feminino , Testes Genéticos/ética , Testes Genéticos/normas , Genômica/métodos , Custos de Cuidados de Saúde , Conhecimentos, Atitudes e Prática em Saúde , Pessoal de Saúde , Sequenciamento de Nucleotídeos em Larga Escala/ética , Humanos , Intenção , Masculino , Pacientes , Prevalência , Sequenciamento Completo do Genoma/economia
3.
Genet Med ; 20(12): 1544-1553, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29565423

RESUMO

PURPOSE: Great uncertainty exists about the costs associated with whole-genome sequencing (WGS). METHODS: One hundred cardiology patients with cardiomyopathy diagnoses and 100 ostensibly healthy primary care patients were randomized to receive a family-history report alone or with a WGS report. Cardiology patients also reviewed prior genetic test results. WGS costs were estimated by tracking resource use and staff time. Downstream costs were estimated by identifying services in administrative data, medical records, and patient surveys for 6 months. RESULTS: The incremental cost per patient of WGS testing was $5,098 in cardiology settings and $5,073 in primary care settings compared with family history alone. Mean 6-month downstream costs did not differ statistically between the control and WGS arms in either setting (cardiology: difference = -$1,560, 95% confidence interval -$7,558 to $3,866, p = 0.36; primary care: difference = $681, 95% confidence interval -$884 to $2,171, p = 0.70). Scenario analyses showed the cost reduction of omitting or limiting the types of secondary findings was less than $69 and $182 per patient in cardiology and primary care, respectively. CONCLUSION: Short-term costs of WGS were driven by the costs of sequencing and interpretation rather than downstream health care. Disclosing additional types of secondary findings has a limited cost impact following disclosure.


Assuntos
Análise Custo-Benefício/economia , Testes Genéticos/economia , Atenção Primária à Saúde/economia , Sequenciamento Completo do Genoma/economia , Cardiologia/economia , Cardiologia/tendências , Feminino , Testes Genéticos/tendências , Humanos , Masculino , Projetos Piloto
4.
Ann Intern Med ; 167(3): 159-169, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28654958

RESUMO

Background: Whole-genome sequencing (WGS) in asymptomatic adults might prevent disease but increase health care use without clinical value. Objective: To describe the effect on clinical care and outcomes of adding WGS to standardized family history assessment in primary care. Design: Pilot randomized trial. (ClinicalTrials.gov: NCT01736566). Setting: Academic primary care practices. Participants: 9 primary care physicians (PCPs) and 100 generally healthy patients recruited at ages 40 to 65 years. Intervention: Patients were randomly assigned to receive a family history report alone (FH group) or in combination with an interpreted WGS report (FH + WGS group), which included monogenic disease risk (MDR) results (associated with Mendelian disorders), carrier variants, pharmacogenomic associations, and polygenic risk estimates for cardiometabolic traits. Each patient met with his or her PCP to discuss the report. Measurements: Clinical outcomes and health care use through 6 months were obtained from medical records and audio-recorded discussions between PCPs and patients. Patients' health behavior changes were surveyed 6 months after receiving results. A panel of clinician-geneticists rated the appropriateness of how PCPs managed MDR results. Results: Mean age was 55 years; 58% of patients were female. Eleven FH + WGS patients (22% [95% CI, 12% to 36%]) had new MDR results. Only 2 (4% [CI, 0.01% to 15%]) had evidence of the phenotypes predicted by an MDR result (fundus albipunctatus due to RDH5 and variegate porphyria due to PPOX). Primary care physicians recommended new clinical actions for 16% (CI, 8% to 30%) of FH patients and 34% (CI, 22% to 49%) of FH + WGS patients. Thirty percent (CI, 17% to 45%) and 41% (CI, 27% to 56%) of FH and FH + WGS patients, respectively, reported making a health behavior change after 6 months. Geneticists rated PCP management of 8 MDR results (73% [CI, 39% to 99%]) as appropriate and 2 results (18% [CI, 3% to 52%]) as inappropriate. Limitation: Limited sample size and ancestral and socioeconomic diversity. Conclusion: Adding WGS to primary care reveals new molecular findings of uncertain clinical utility. Nongeneticist providers may be able to manage WGS results appropriately, but WGS may prompt additional clinical actions of unclear value. Primary Funding Source: National Institutes of Health.


Assuntos
Anamnese , Medidas de Resultados Relatados pelo Paciente , Atenção Primária à Saúde/métodos , Sequenciamento Completo do Genoma , Adulto , Idoso , Doenças Assintomáticas , Feminino , Comportamentos Relacionados com a Saúde , Custos de Cuidados de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Aceitação pelo Paciente de Cuidados de Saúde , Projetos Piloto , Encaminhamento e Consulta/economia , Medição de Risco
5.
Am J Hum Genet ; 98(6): 1051-1066, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27181682

RESUMO

Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine.


Assuntos
Pesquisa Biomédica , Prática Clínica Baseada em Evidências , Exoma/genética , Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Adulto , Doenças Cardiovasculares/genética , Criança , Ensaios Clínicos como Assunto , Humanos , National Human Genome Research Institute (U.S.) , Grupos Populacionais , Software , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA