Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
IEEE Trans Med Imaging ; 43(3): 1214-1224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37938947

RESUMO

Accurate measurement of optical absorption coefficients from photoacoustic imaging (PAI) data would enable direct mapping of molecular concentrations, providing vital clinical insight. The ill-posed nature of the problem of absorption coefficient recovery has prohibited PAI from achieving this goal in living systems due to the domain gap between simulation and experiment. To bridge this gap, we introduce a collection of experimentally well-characterised imaging phantoms and their digital twins. This first-of-a-kind phantom data set enables supervised training of a U-Net on experimental data for pixel-wise estimation of absorption coefficients. We show that training on simulated data results in artefacts and biases in the estimates, reinforcing the existence of a domain gap between simulation and experiment. Training on experimentally acquired data, however, yielded more accurate and robust estimates of optical absorption coefficients. We compare the results to fluence correction with a Monte Carlo model from reference optical properties of the materials, which yields a quantification error of approximately 20%. Application of the trained U-Nets to a blood flow phantom demonstrated spectral biases when training on simulated data, while application to a mouse model highlighted the ability of both learning-based approaches to recover the depth-dependent loss of signal intensity. We demonstrate that training on experimental phantoms can restore the correlation of signal amplitudes measured in depth. While the absolute quantification error remains high and further improvements are needed, our results highlight the promise of deep learning to advance quantitative PAI.


Assuntos
Técnicas Fotoacústicas , Animais , Camundongos , Imagens de Fantasmas , Técnicas Fotoacústicas/métodos , Diagnóstico por Imagem , Simulação por Computador , Método de Monte Carlo
2.
Adv Sci (Weinh) ; 10(23): e2302562, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289088

RESUMO

Real-time imaging and functional assessment of the intestinal tract and its transit pose a significant challenge to conventional clinical diagnostic methods. Multispectral optoacoustic tomography (MSOT), a molecular-sensitive imaging technology, offers the potential to visualize endogenous and exogenous chromophores in deep tissue. Herein, a novel approach using the orally administered clinical-approved fluorescent dye indocyanine green (ICG) for bedside, non-ionizing evaluation of gastrointestinal passage is presented. The authors are able to show the detectability and stability of ICG in phantom experiments. Furthermore, ten healthy subjects underwent MSOT imaging at multiple time points over eight hours after ingestion of a standardized meal with and without ICG. ICG signals can be visualized and quantified in different intestinal segments, while its excretion is confirmed by fluorescent imaging of stool samples. These findings indicate that contrast-enhanced MSOT (CE-MSOT) provides a translatable real-time imaging approach for functional assessment of the gastrointestinal tract.


Assuntos
Verde de Indocianina , Tomografia Computadorizada por Raios X , Humanos , Corantes Fluorescentes , Imagens de Fantasmas , Trato Gastrointestinal/diagnóstico por imagem
3.
Adv Sci (Weinh) ; 10(18): e2300564, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083262

RESUMO

Optoacoustic imaging (OAI) enables microscale imaging of endogenous chromophores such as hemoglobin at significantly higher penetration depths compared to other optical imaging technologies. Raster-scanning optoacoustic mesoscopy (RSOM) has recently been shown to identify superficial microvascular changes associated with human skin pathologies. In animal models, the imaging depth afforded by RSOM can enable entirely new capabilities for noninvasive imaging of vascular structures in the gastrointestinal tract, but exact localization of intra-abdominal organs is still elusive. Herein the development and application of a novel transrectal absorber guide for RSOM (TAG-RSOM) is presented to enable accurate transabdominal localization and assessment of colonic vascular networks in vivo. The potential of TAG-RSOM is demonstrated through application during mild and severe acute colitis in mice. TAG-RSOM enables visualization of transmural vascular networks, with changes in colon wall thickness, blood volume, and OAI signal intensities corresponding to colitis-associated inflammatory changes. These findings suggest TAG-RSOM can provide a novel monitoring tool in preclinical IBD models, refining animal procedures and underlines the capabilities of such technologies to address inflammatory bowel diseases in humans.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Técnicas Fotoacústicas , Humanos , Animais , Camundongos , Técnicas Fotoacústicas/métodos , Pele , Imagem Óptica , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Colite/diagnóstico por imagem
4.
OSA Contin ; 3(10): 2660-2679, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34222834

RESUMO

Non-interferometric approaches to quantitative phase imaging could enable its application in low-cost, miniaturised settings such as capsule endoscopy. We present two possible architectures and both analyse and mitigate the effect of sensor misalignment on phase imaging performance. This is a crucial step towards determining the feasibility of implementing phase imaging in a capsule device. First, we investigate a design based on a folded 4f correlator, both in simulation and experimentally. We demonstrate a novel technique for identifying and compensating for axial misalignment and explore the limits of the approach. Next, we explore the implications of axial and transverse misalignment, and of manufacturing variations on the performance of a phase plate-based architecture, identifying a clear trade-off between phase plate resolution and algorithm convergence time. We conclude that while the phase plate architecture is more robust to misalignment, both architectures merit further development with the goal of realising a low-cost, compact system for applying phase imaging in capsule endoscopy.

5.
Nat Rev Clin Oncol ; 14(3): 169-186, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27725679

RESUMO

Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.


Assuntos
Biomarcadores Tumorais , Neoplasias/diagnóstico , Tomada de Decisão Clínica , Análise Custo-Benefício , Fluordesoxiglucose F18 , Ácido Fólico/análogos & derivados , Humanos , Neoplasias/economia , Compostos de Organotecnécio , Tomografia por Emissão de Pósitrons/métodos , Prognóstico , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Projetos de Pesquisa/normas , Viés de Seleção
6.
J Nucl Med ; 52(9): 1333-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21849405

RESUMO

Dynamic nuclear polarization (DNP) is an emerging technique for dramatically increasing the sensitivity of magnetic resonance spectroscopy (MRS). This review evaluates the potential strengths and weaknesses of DNP-enhanced (13)C magnetic resonance spectroscopic imaging (DNP-MRSI) as a clinical imaging technique in comparison to PET. The major advantage of MRS is chemical shift, which enables the injected molecule to be observed separately from its metabolites, whereas the major advantage of PET is its high sensitivity. Factors such as spatial and temporal resolution and potential risks and costs of the two techniques will be discussed. PET tracers and (13)C-labeled molecules that can be used in oncology will be reviewed with reference to the biologic processes they detect. Because DNP-MRSI and PET are, in principle, similar techniques for assessing tumor metabolism, the experiences gained during the development of PET may help to accelerate translation of DNP-MRSI into routine patient imaging.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Carbono , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/economia , Espectroscopia de Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Tomografia por Emissão de Pósitrons/efeitos adversos , Tomografia por Emissão de Pósitrons/economia , Compostos Radiofarmacêuticos/provisão & distribuição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA