Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Integr Environ Assess Manag ; 20(3): 674-698, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36688277

RESUMO

The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency, and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population. This can be challenging in wildlife as there is often high uncertainty and error caused by broad-based, interspecific extrapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity (dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering "all relevant factors." This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species-specific biology, diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this review, we identify four discrete categories of complexity that should be considered in an exposure assessment-chemical, environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk assessment is critical to moving beyond screening-level methods that have a high degree of uncertainty and suffer from conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross-cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure assessments, we present a new framework for risk assessors to construct an "exposure matrix." Using three case studies, we illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2024;20:674-698. © 2023 SETAC.

2.
Environ Toxicol Chem ; 40(9): 2538-2546, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34133786

RESUMO

Traditional ecotoxicology methods involving copepods have focused on exposure of pooled individuals and averaged responses, but there is increasing awareness of the importance of individual variation. Many biological traits are density dependent, and decisions to use single-individual or pooled exposure may affect responses to anthropogenic stressors. We investigated how conspecific density as a biotic stressor affects behavioral and respiratory responses to copper (Cu) exposure in the coastal copepod Tigriopus brevicornis. Adults were incubated at densities of 1, 2, or 4 individuals per replicate in 3.2 mL of exposure medium (23 µg Cu L-1 or control). Our results show an interaction of Cu exposure and density on respiration. The Cu exposure increased respiration, but this effect diminished with increasing density. We also found reduced swimming activity with increasing density. We propose 2 nonexclusive alternative explanations for the density-dependent respiratory increase of Cu exposure: 1) a behavioral stress response to low conspecific density, or 2) increased Cu exposure due to increased swimming activity. We emphasize the importance of considering density-dependency in responses when designing and interpreting ecotoxicology studies. Environ Toxicol Chem 2021;40:2538-2546. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Ecotoxicologia , Humanos , Natação , Poluentes Químicos da Água/toxicidade
3.
Environ Toxicol Chem ; 40(1): 139-147, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035364

RESUMO

Life-history traits determine individual fitness and the fate of populations. Imidacloprid, a widely used neonicotinoid insecticide, which persists in soil for more than 100 d at biologically relevant levels, may affect nontarget and ecologically important species, such as collembolans. In the present study, we determined the sublethal effects of short-term imidacloprid exposure and postexposure recovery in the collembolan Folsomia quadrioculata, which occurs abundantly across the northern hemisphere. We assessed survival, egg production, and hatching success in adult springtails exposed for 14 d through the diet to imidacloprid, followed by a 28-d postexposure phase. Survival and hatching success were high throughout the experiment in all the treatments, with no clear concentration dependence. However, egg production declined during the exposure phase and nearly stopped between 8 and 14 d in all the treatments (except the control) but resumed during the postexposure phase. Moreover, the resumption of egg production showed a concentration-dependent delay. Our findings suggest that low imidacloprid exposures can restrict reproduction, with potentially severe consequences for the population, notwithstanding the partial recovery in egg production. Environ Toxicol Chem 2021;40:139-147. © 2020 SETAC.


Assuntos
Artrópodes , Inseticidas , Animais , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
4.
Environ Sci Technol ; 47(20): 11599-606, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24024626

RESUMO

Food web biomagnification is increasingly assessed by estimating trophic magnification factors (TMF) where solvent (often lipid) normalized contaminant concentration is regressed onto the trophic level, and TMFs are represented by the slope of the relationship. In TMF regressions, the uncertainty in the contaminant concentrations is appreciated, whereas the trophic levels are assumed independent and not associated with variability or uncertainty pertaining to e.g. quantification. In reality, the trophic levels may vary due to measurement error in stable isotopes of nitrogen (δ(15)N) of each sample, in δ(15)N in selected reference baseline trophic level, and in the enrichment factor of δ(15)N between two trophic levels (ΔN), which are all needed to calculate trophic levels. The present study used a Markov Chain Monte Carlo method, with knowledge about the food web structure, which resulted in a dramatic increase in the precision in the TMF estimates. This also lead to a better understanding of the uncertainties in bioaccumulation measures; instead of using point estimates of TMF, the uncertainty can be quantified (i.e., TMF >1, namely positive biomagnification, with an estimated X % probability).


Assuntos
Cadeia Alimentar , Teorema de Bayes , Simulação por Computador , Cadeias de Markov , Método de Monte Carlo , Isótopos de Nitrogênio , Análise de Regressão
5.
Integr Environ Assess Manag ; 7(4): 657-67, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21384542

RESUMO

The Norwegian guidelines for risk assessment of contaminated sediments are used to identify areas of concern where remediation may be needed to meet the governmental long-term goal of clean fjords and harbors along the Norwegian coastline. By a thorough sensitivity analysis, this study identifies the most influential factors and parameters for the Tier 2A model in this risk guideline, which are used to estimate fluxes of contaminants from sediments due to diffusion and bioturbation (F(diff)), resuspension caused by ship traffic (F(skipnorm)), and uptake and predation of benthic biota (F(org)). The sensitivity analysis is run for 36 different scenarios combining 3 different sizes of contaminated area, 3 harbor types, and 3 persistent organic pollutants, namely lindane (γ-hexachlorocyclohexane), benzo[a]pyrene, and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153), as well as the metal mercury (Hg). The most influential parameters vary from scenario to scenario, but generally 5 parameters appear to be particularly influential for the fluxes and transport estimated by the Tier 2A model: flux of organic carbon to sediment (OC(sed)), factor for increased diffusion due to bioturbation (a), sediment-water partitioning coefficient (K(d)), benthic biota-water bioconcentration factor (BCF(fisk)), and mass of resuspended fine sediment during arrival or departure of a ship (m(sed)). We also quantify which of the 3 fluxes (F(diff), F(skipnorm), and F(org)) dominate in the different scenarios. Our sensitivity analysis results can be used by authorities, problem owners, consultants, and environmental managers involved in contaminated sediment management to gain insight on the key processes and parameters and to focus their site-specific or laboratory-based measurement efforts on the key parameters and thus increase efficiency and reliability in the contaminated sediment risk assessment.


Assuntos
Ecotoxicologia/métodos , Sedimentos Geológicos/química , Poluentes Químicos da Água/química , Difusão , Ecotoxicologia/normas , Recuperação e Remediação Ambiental , Guias como Assunto , Modelos Teóricos , Noruega , Medição de Risco , Incerteza , Poluentes Químicos da Água/isolamento & purificação
6.
Environ Sci Technol ; 44(19): 7705-10, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20836489

RESUMO

The purpose of this study was to investigate presence and potential accumulation of cyclic volatile methyl siloxanes (cVMS) in the Arctic environment. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were analyzed in sediment, zooplankton, Atlantic cod (Gadus morhua), shorthorn sculpin (Myxocephalus scorpius), and bearded seal (Erignathus barbatus) collected from the Svalbard archipelago within the European Arctic in July 2009. Highest levels were found for D5 in fish collected from Adventfjorden, with average concentrations of 176 and 531 ng/g lipid in Atlantic cod and shorthorn sculpin, respectively. Decreasing concentration of D5 in sediment collected away from waste water outlet in Adventfjorden indicates that the local settlement of Longyearbyen is a point source to the local aquatic environment. Median biota sediment accumulation factors (BSAFs) calculated for D5 in Adventfjorden were 2.1 and 1.5 for Atlantic cod and shorthorn sculpin, respectively. Biota concentrations of D5 were lower or below detection limits in remote and sparsely populated regions (Kongsfjorden and Liefdefjorden) compared to Adventfjorden. The levels of cVMS were found to be low or below detection limits in bearded seal blubber and indicate a low risk for cVMS accumulation within mammals. Accumulation of cVMS in fish appears to be influenced by local exposure from human settlements within the Arctic.


Assuntos
Poluentes Ambientais/análise , Siloxanas/análise , Animais , Regiões Árticas , Europa (Continente) , Sedimentos Geológicos , Limite de Detecção , Volatilização
7.
Environ Sci Technol ; 40(16): 5139-46, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16955919

RESUMO

The aim of this study was to determine the role of cold condensation and fractionation on the occurrence of organochlorine contaminants (OCs) in avian marine top predators along a latitudinal gradient. We measured 24 polychlorinated biphenyl (PCB) congeners and six pesticide OCs in blood of great black-backed gulls (Larus marinus) from the Norwegian Coast (58 degrees N-70 degrees N) and glaucous gulls (Larus hyperboreus) from Bjornoya in the Norwegian Arctic (74 degrees N). Glaucous gulls had up to 3 times higher sigmaOC concentrations compared to the great black-backed gulls, and a OC pattern dominated largely by persistent and low volatile compounds such as highly chlorinated PCBs and metabolites such as oxychlordane. This was not consistent with cold condensation and fractionation theory, but probably related to diet and elevated biomagnification. Among great black-backed gulls, however, there were indications of both cold condensation and fractionation. Higher and lower chlorinated PCBs had highest absolute concentrations in the south and in the north, respectively, except for one location at an intermediate latitude, where concentrations of most OCs exceeded all other locations. In terms of proportional contribution to sigmaOC (pattern), relatively volatile OCs such as HCB, oxychlordane and tri- to penta- PCB congeners were more important at northern latitudes, while hexa- to nona-PCBs made up a larger proportion of sigmaOC in the south. The results thus showed that differences in global distribution of compounds with different physicochemical properties could be detected in avian top predators such as large gulls, even if biomagnification and biotransformation influence both the absolute concentrations and the patterns of OCs.


Assuntos
Cloro/química , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Bifenilos Policlorados/química , Animais , Biotransformação , Aves , Charadriiformes , Química/métodos , Clordano/análogos & derivados , Clordano/química , Ecossistema , Exposição Ambiental , Hidrocarbonetos Clorados/química , Modelos Químicos , Método de Monte Carlo , Noruega , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA