RESUMO
BACKGROUND: High ambient air temperatures in Africa pose significant health and behavioral challenges in populations with limited access to cooling adaptations. The built environment can exacerbate heat exposure, making passive home cooling adaptations a potential method for protecting occupants against indoor heat exposure. METHODS: We are conducting a 2-year community-based stratified cluster randomized controlled trial (cRCT) implementing sunlight-reflecting roof coatings, known as "cool roofs," as a climate change adaptation intervention for passive indoor home cooling. Our primary research objective is to investigate the effects of cool roofs on health, indoor climate, economic, and behavioral outcomes in rural Burkina Faso. This cRCT is nested in the Nouna Health and Demographic Surveillance System (HDSS), a population-based dynamic cohort study of all people living in a geographically contiguous area covering 59 villages, 14305 households and 28610 individuals. We recruited 1200 participants, one woman and one man, each in 600 households in 25 villages in the Nouna HDSS. We stratified our sample by (i) village and (ii) two prevalent roof types in this area of Burkina Faso: mud brick and tin. We randomized the same number of people (12) and homes (6) in each stratum 1:1 to receiving vs. not receiving the cool roof. We are collecting outcome data on one primary endpoint - heart rate, (a measure of heat stress) and 22 secondary outcomes encompassing indoor climate parameters, blood pressure, body temperature, heat-related outcomes, blood glucose, sleep, cognition, mental health, health facility utilization, economic and productivity outcomes, mosquito count, life satisfaction, gender-based violence, and food consumption. We followed all participants for 2 years, conducting monthly home visits to collect objective and subjective outcomes. Approximately 12% of participants (n = 152) used smartwatches to continuously measure endpoints including heart rate, sleep and activity. DISCUSSION: Our study demonstrates the potential of large-scale cRCTs to evaluate novel climate change adaptation interventions and provide evidence supporting investments in heat resilience in sub-Saharan Africa. By conducting this research, we will contribute to better policies and interventions to help climate-vulnerable populations ward off the detrimental effects of extreme indoor heat on health. TRIAL REGISTRATION: German Clinical Trials Register (DRKS) DRKS00023207. Registered on April 19, 2021.
Assuntos
Temperatura Baixa , Saúde Ambiental , Feminino , Humanos , Masculino , Burkina Faso/epidemiologia , Estudos de Coortes , Ensaios Clínicos Controlados Aleatórios como Assunto , HabitaçãoRESUMO
Background: Climate change significantly impacts health in low-and middle-income countries (LMICs), exacerbating vulnerabilities. Comprehensive data for evidence-based research and decision-making is crucial but scarce. Health and Demographic Surveillance Sites (HDSSs) in Africa and Asia provide a robust infrastructure with longitudinal population cohort data, yet they lack climate-health specific data. Acquiring this information is essential for understanding the burden of climate-sensitive diseases on populations and guiding targeted policies and interventions in LMICs to enhance mitigation and adaptation capacities. Objective: The objective of this research is to develop and implement the Change and Health Evaluation and Response System (CHEERS) as a methodological framework, designed to facilitate the generation and ongoing monitoring of climate change and health-related data within existing Health and Demographic Surveillance Sites (HDSSs) and comparable research infrastructures. Methods: CHEERS uses a multi-tiered approach to assess health and environmental exposures at the individual, household, and community levels, utilizing digital tools such as wearable devices, indoor temperature and humidity measurements, remotely sensed satellite data, and 3D-printed weather stations. The CHEERS framework utilizes a graph database to efficiently manage and analyze diverse data types, leveraging graph algorithms to understand the complex interplay between health and environmental exposures. Results: The Nouna CHEERS site, established in 2022, has yielded significant preliminary findings. By using remotely-sensed data, the site has been able to predict crop yield at a household level in Nouna and explore the relationships between yield, socioeconomic factors, and health outcomes. The feasibility and acceptability of wearable technology have been confirmed in rural Burkina Faso for obtaining individual-level data, despite the presence of technical challenges. The use of wearables to study the impact of extreme weather on health has shown significant effects of heat exposure on sleep and daily activity, highlighting the urgent need for interventions to mitigate adverse health consequences. Conclusion: Implementing the CHEERS in research infrastructures can advance climate change and health research, as large and longitudinal datasets have been scarce for LMICs. This data can inform health priorities, guide resource allocation to address climate change and health exposures, and protect vulnerable communities in LMICs from these exposures.