Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Malar J ; 23(1): 158, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773512

RESUMO

BACKGROUND: This study aimed to assess the spatial distribution of Anopheles mosquito larval habitats and the environmental factors associated with them, as a prerequisite for the implementation of larviciding. METHODS: The study was conducted in December 2021, during the transition period between the end of the short rainy season (September-November) and the short dry season (December-February). Physical, biological, and land cover data were integrated with entomological observations to collect Anopheles larvae in three major towns: Mitzic, Oyem, and Bitam, using the "dipping" method during the transition from rainy to dry season. The collected larvae were then reared in a field laboratory established for the study period. After the Anopheles mosquitoes had emerged, their species were identified using appropriate morphological taxonomic keys. To determine the influence of environmental factors on the breeding of Anopheles mosquitoes, multiple-factor analysis (MFA) and a binomial generalized linear model were used. RESULTS: According to the study, only 33.1% out of the 284 larval habitats examined were found to be positive for Anopheles larvae, which were primarily identified as belonging to the Anopheles gambiae complex. The findings of the research suggested that the presence of An. gambiae complex larvae in larval habitats was associated with various significant factors such as higher urbanization, the size and type of the larval habitats (pools and puddles), co-occurrence with Culex and Aedes larvae, hot spots in ambient temperature, moderate rainfall, and land use patterns. CONCLUSIONS: The results of this research mark the initiation of a focused vector control plan that aims to eradicate or lessen the larval habitats of An. gambiae mosquitoes in Gabon's Woleu Ntem province. This approach deals with the root causes of malaria transmission through larvae and is consistent with the World Health Organization's (WHO) worldwide objective to decrease malaria prevalence in regions where it is endemic.


Assuntos
Anopheles , Ecossistema , Larva , Malária , Mosquitos Vetores , Animais , Anopheles/fisiologia , Anopheles/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Gabão , Malária/transmissão , Mosquitos Vetores/fisiologia , Estações do Ano , Análise Espacial , Distribuição Animal
2.
Parasit Vectors ; 15(1): 217, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725630

RESUMO

BACKGROUND: Vector control is considered to be the most successful component of malaria prevention programs and a major contributor to the reduction of malaria incidence over the last two decades. However, the success of this strategy is threatened by the development of resistance to insecticides and behavioural adaptations of vectors. The aim of this study was to monitor malaria transmission and the distribution of insecticide resistance genes in Anopheles populations from three rural areas of the Moyen Ogooué Province of Gabon. METHODS: Anopheles spp. were collected using human landing catches in Bindo, Nombakélé and Zilé, three villages located in the surroundings of Lambaréné, during both the rainy and dry seasons. Mosquitoes were identified morphologically, and DNA was extracted from heads and thoraces. Members of the Anopheles gambiae complex were identified by molecular methods using the PCR SINE200 protocol and by sequencing of the internal transcribed spacer 2 region. Taqman assays were used to determine Plasmodium infection and the presence of resistance alleles. RESULTS: Anopheles gambiae sensu lato (97.7%), An. moucheti (1.7%) and An. coustani (0.6%) were the three groups of species collected. Anopheles gambiae sensu stricto (98.5%) and An. coluzzii (1.5%) were the only species of the An. gambiae complex present in the collection. Of the 1235 Anopheles collected, 1193 were collected during the rainy season; these exhibited an exophagic behaviour, and consistently more mosquitoes were collected outdoor than indoor in the three study areas. Of the 1166 Anopheles screened, 26 (2.2%) were infected with Plasmodium species, specifically Plasmodium falciparum (66.7%), P. malariae (15.4%), P. ovale curtisi (11.5%) and P. ovale wallikeri (3.8%). Malaria transmission intensity was high in Zilé, with an average annual entomological inoculation rate (aEIR) of 243 infective bites per year, while aEIRs in Bindo and Nombakélé were 80.2 and 17 infective bites per year, respectively. Both the L1014F and L1014S mutations were present at frequencies > 95% but no Ace1G119S mutation was found. CONCLUSION: Our results demonstrate that malaria transmission intensity is heterogeneous in these three rural areas of Moyen Ogooué Province, with areas of high transmission, such as Zilé. The exophagic behaviour of the mosquitoes as well as the high frequency of resistance mutations are serious challenges that need to be addressed by the deployment of control measures adapted to the local setting.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/genética , Gabão/epidemiologia , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores/genética , Plasmodium falciparum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA