Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 4570, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301365

RESUMO

Bacteriocins and reuterin are promising antimicrobials for application in food, veterinary, and medical sectors. In the light of their high potential for application in hand sanitizer, we investigated the skin toxicity of reuterin, microcin J25, pediocin PA-1, bactofencin A, and nisin Z in vitro using neutral red and LDH release assays on NHEK cells. We determined their skin sensitization potential using the human cell line activation test (h-CLAT). Their skin irritation potential was measured on human epidermal model EpiDerm™. We showed that the viability and membrane integrity of NHEK cells remained unaltered after exposure to bacteriocins and reuterin at concentrations up to 400 µg/mL and 80 mg/mL, respectively. Furthermore, microcin J25 and reuterin showed no skin sensitization at concentrations up to 100 µg/mL and 40 mg/mL, respectively, while pediocin PA-1, bactofencin A, and nisin Z caused sensitization at concentrations higher than 100 µg/mL. Tissue viability was unaffected in presence of bacteriocins and reuterin at concentrations up to 200 µg/mL and 40 mg/mL, respectively, which was confirmed by measuring cytokine IL-1α and IL-8 levels and by histological analysis. In conclusion, the current study provides scientific evidence that some bacteriocins and reuterin, could be safely applied topically as sanitizers at recommended concentrations.


Assuntos
Bacteriocinas , Bacteriocinas/metabolismo , Bacteriocinas/toxicidade , Gliceraldeído/análogos & derivados , Humanos , Propano
2.
Membranes (Basel) ; 10(6)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575710

RESUMO

Herring milt hydrolysate (HMH), like many fish products, presents the drawback to be associated with off-flavors. As odor is an important criterion, an effective deodorization method targeting the volatile compounds responsible for off-flavors needs to be developed. The potential of electrodialysis (ED) to remove the 15 volatile compounds identified, in the first part of this work, for their main contribution to the odor of HMH, as well as trimethylamine, dimethylamine and trimethylamine oxide, was assessed by testing the impact of both hydrolysate pH (4 and 7) and current conditions (no current vs. current applied). The ED performance was compared with that of a deaerator by assessing three hydrolysate pH values (4, 7 and 10). The initial pH of HMH had a huge impact on the targeted compounds, while ED had no effect. The fouling formation, resulting from electrostatic and hydrophobic interactions between HMH constituents and ion-exchange membranes (IEM); the occurrence of water dissociation on IEM interfaces, due to the reaching of the limiting current density; and the presence of water dissociation catalyzers were considered as the major limiting process conditions. The deaerator treatment on hydrolysate at pH 7 and its alkalization until pH 10 led to the best removal of odorant compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA