RESUMO
A model of the outer membrane of Gram-negative bacteria was created by the deposition of a monolayer of purified rough mutant lipopolysaccharides at an air/water interface. The density profiles of monovalent (K(+)) and divalent (Ca(2+)) cations normal to the lipopolysaccharides (LPS) monolayers were investigated using grazing-incidence X-ray fluorescence. In the absence of Ca(2+), a K(+) concentration peak was found in the negatively charged LPS headgroup region. With the addition of CaCl(2), Ca(2+) ions almost completely displaced K(+) ions from the headgroup region. By integrating the experimentally reconstructed excess ion density profiles, we obtained an accurate measurement of the effective charge density of LPS monolayers. The experimental findings were compared to the results of Monte Carlo simulations based on a coarse-grained minimal model of LPS molecules and showed excellent agreement.
Assuntos
Cátions/análise , Membrana Celular/química , Bactérias Gram-Negativas/química , Lipopolissacarídeos/química , Modelos Biológicos , Cálcio , Simulação por Computador , Método de Monte Carlo , Potássio , Espectrometria por Raios X , Eletricidade EstáticaRESUMO
Grazing incidence x-ray scattering techniques and Monte Carlo (MC) simulations are combined to reveal the influence of molecular structure (genetic mutation) and divalent cations on the survival of gram negative bacteria against cationic peptides such as protamine. The former yields detailed structures of bacterial lipopolysaccharide (LPS) membranes with minimized radiation damages, while the minimal computer model based on the linearized Poisson-Boltzmann theory allows for the simulation of conformational changes of macromolecules (LPSs and peptides) that occur in the time scale of ms. The complementary combination of the structural characterizations and MC simulation demonstrates that the condensations of divalent ions (Ca2+ or Mg2+) in the negatively charged core saccharides are crucial for bacterial survival.
Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Método de Monte Carlo , Protaminas/farmacologia , Animais , Cálcio/farmacologia , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/fisiologia , Lipídeo A/química , Lipopolissacarídeos/genética , Mutação , Pressão , Protaminas/metabolismoRESUMO
BACKGROUND: Growing concerns about bacterial resistance to antibiotics have prompted the development of alternative therapies like those based on cationic antimicrobial peptides (APs). These compounds not only are bactericidal by themselves but also enhance the activity of antibiotics. Studies focused on the systematic characterization of APs are hampered by the lack of standard guidelines for testing these compounds. We investigated whether the information provided by methods commonly used for the biological characterization of APs is comparable, as it is often assumed. For this purpose, we determined the bacteriostatic, bactericidal, and permeability-increasing activity of synthetic peptides (n = 57; 9-13 amino acid residues in length) analogous to the lipopolysaccharide-binding region of human lactoferricin by a number of the most frequently used methods and carried out a comparative analysis. RESULTS: While the minimum inhibitory concentration determined by an automated turbidimetry-based system (Bioscreen) or by conventional broth microdilution methods did not differ significantly, bactericidal activity measured under static conditions in a low-ionic strength solvent resulted in a vast overestimation of antimicrobial activity. Under these conditions the degree of antagonism between the peptides and the divalent cations differed greatly depending on the bacterial strain tested. In contrast, the bioactivity of peptides was not affected by the type of plasticware (polypropylene vs. polystyrene). Susceptibility testing of APs using cation adjusted Mueller-Hinton was the most stringent screening method, although it may overlook potentially interesting peptides. Permeability assays based on sensitization to hydrophobic antibiotics provided overall information analogous - though not quantitatively comparable- to that of tests based on the uptake of hydrophobic fluorescent probes. CONCLUSION: We demonstrate that subtle changes in methods for testing cationic peptides bring about marked differences in activity. Our results show that careful selection of the test strains for susceptibility testing and for screenings of antibiotic-sensitizing activity is of critical importance. A number of peptides proved to have potent permeability-increasing activity at subinhibitory concentrations and efficiently sensitized Pseudomonas aeruginosa both to hydrophilic and hydrophobic antibiotics.