Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Stem Cells Transl Med ; 4(3): 217-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25650438

RESUMO

There is a need for physical standards (reference materials) to ensure both reproducibility and consistency in the production of somatic cell types from human pluripotent stem cell (hPSC) sources. We have outlined the need for reference materials (RMs) in relation to the unique properties and concerns surrounding hPSC-derived products and suggest in-house approaches to RM generation relevant to basic research, drug screening, and therapeutic applications. hPSCs have an unparalleled potential as a source of somatic cells for drug screening, disease modeling, and therapeutic application. Undefined variation and product variability after differentiation to the lineage or cell type of interest impede efficient translation and can obscure the evaluation of clinical safety and efficacy. Moreover, in the absence of a consistent population, data generated from in vitro studies could be unreliable and irreproducible. Efforts to devise approaches and tools that facilitate improved consistency of hPSC-derived products, both as development tools and therapeutic products, will aid translation. Standards exist in both written and physical form; however, because many unknown factors persist in the field, premature written standards could inhibit rather than promote innovation and translation. We focused on the derivation of physical standard RMs. We outline the need for RMs and assess the approaches to in-house RM generation for hPSC-derived products, a critical tool for the analysis and control of product variation that can be applied by researchers and developers. We then explore potential routes for the generation of RMs, including both cellular and noncellular materials and novel methods that might provide valuable tools to measure and account for variation. Multiparametric techniques to identify "signatures" for therapeutically relevant cell types, such as neurons and cardiomyocytes that can be derived from hPSCs, would be of significant utility, although physical RMs will be required for clinical purposes.


Assuntos
Pesquisa Biomédica , Avaliação Pré-Clínica de Medicamentos , Células-Tronco Pluripotentes , Pesquisa Biomédica/instrumentação , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Pesquisa Biomédica/tendências , Avaliação Pré-Clínica de Medicamentos/economia , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Avaliação Pré-Clínica de Medicamentos/tendências , Humanos , Padrões de Referência
2.
Stem Cells Dev ; 24(1): 1-10, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25244598

RESUMO

The promise of off-the-shelf cellular therapeutics (CTPs) based on allogeneic induced pluripotent stem cells (iPSCs) may be hindered by alloimmunity, leading many to suggest that such products could be based on a series of human leukocyte antigen (HLA)-typed iPSC lines allowing at least some degree of tissue matching. While based on sound scientific principles, this suggestion presupposes that other immune responses will not be limiting. Technically this approach would present a number of major challenges, the first being the development of a suitably reliable reprogramming method amenable to validation that results in highly consistent iPSC lines. Further, the resulting array of HLA-typed iPSCs would need to be shown to be capable of being manufactured into the same CTP and exhibit comparable quality, safety, and efficacy. When the enormities of these challenges are laid out, it becomes apparent that the manufacturing and product development challenges would be unprecedented. Given the uncertainties and lack of clinical experience with iPSC-based CTPs at this time, the financial costs and commercial risks do not appear to be acceptable.


Assuntos
Antígenos HLA/imunologia , Teste de Histocompatibilidade , Células-Tronco Pluripotentes Induzidas/imunologia , Transplante de Células-Tronco , Linhagem Celular , Teste de Histocompatibilidade/economia , Teste de Histocompatibilidade/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Transplante de Células-Tronco/economia , Transplante de Células-Tronco/métodos
4.
Stem Cells Dev ; 22 Suppl 1: 63-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24304079

RESUMO

Increased global connectivity has catalyzed technological development in almost all industries, in part through the facilitation of novel collaborative structures. Notably, open innovation and crowd-sourcing-of expertise and/or funding-has tremendous potential to increase the efficiency with which biomedical ecosystems interact to deliver safe, efficacious and affordable therapies to patients. Consequently, such practices offer tremendous potential in advancing development of cellular therapies. In this vein, the CASMI Translational Stem Cell Consortium (CTSCC) was formed to unite global thought-leaders, producing academically rigorous and commercially practicable solutions to a range of challenges in pluripotent stem cell translation. Critically, the CTSCC research agenda is defined through continuous consultation with its international funding and research partners. Herein, initial findings for all research focus areas are presented to inform global product development strategies, and to stimulate continued industry interaction around biomanufacturing, strategic partnerships, standards, regulation and intellectual property and clinical adoption.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes , Pesquisa com Células-Tronco/legislação & jurisprudência , Humanos , Propriedade Intelectual , Pesquisa Translacional Biomédica/legislação & jurisprudência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA