Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7990): 92-101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957399

RESUMO

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Assuntos
Sequestro de Carbono , Carbono , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Carbono/análise , Carbono/metabolismo , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Atividades Humanas , Recuperação e Remediação Ambiental/tendências , Desenvolvimento Sustentável/tendências , Aquecimento Global/prevenção & controle
2.
Sci Adv ; 6(27)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32937432

RESUMO

Plant economics run on carbon and nutrients instead of money. Leaf strategies aboveground span an economic spectrum from "live fast and die young" to "slow and steady," but the economy defined by root strategies belowground remains unclear. Here, we take a holistic view of the belowground economy and show that root-mycorrhizal collaboration can short circuit a one-dimensional economic spectrum, providing an entire space of economic possibilities. Root trait data from 1810 species across the globe confirm a classical fast-slow "conservation" gradient but show that most variation is explained by an orthogonal "collaboration" gradient, ranging from "do-it-yourself" resource uptake to "outsourcing" of resource uptake to mycorrhizal fungi. This broadened "root economics space" provides a solid foundation for predictive understanding of belowground responses to changing environmental conditions.

3.
Sci Rep ; 7: 41801, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28150710

RESUMO

Foliar fungi of silver birch (Betula pendula) in an experimental Finnish forest were investigated across a gradient of tree species richness using molecular high-throughput sequencing and visual macroscopic assessment. We hypothesized that the molecular approach detects more fungal taxa than visual assessment, and that there is a relationship among the most common fungal taxa detected by both techniques. Furthermore, we hypothesized that the fungal community composition, diversity, and distribution patterns are affected by changes in tree diversity. Sequencing revealed greater diversity of fungi on birch leaves than the visual assessment method. One species showed a linear relationship between the methods. Species-specific variation in fungal community composition could be partially explained by tree diversity, though overall fungal diversity was not affected by tree diversity. Analysis of specific fungal taxa indicated tree diversity effects at the local neighbourhood scale, where the proportion of birch among neighbouring trees varied, but not at the plot scale. In conclusion, both methods may be used to determine tree diversity effects on the foliar fungal community. However, high-throughput sequencing provided higher resolution of the fungal community, while the visual macroscopic assessment detected functionally active fungal species.


Assuntos
Betula/microbiologia , Fungos/classificação , Fungos/genética , Betula/classificação , Biodiversidade , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Metagenômica/métodos , Folhas de Planta/microbiologia
4.
PLoS One ; 9(11): e109211, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25423316

RESUMO

While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance.


Assuntos
Folhas de Planta/fisiologia , Transpiração Vegetal , Árvores/fisiologia , Xilema/fisiologia , Biodiversidade , Florestas , Especificidade da Espécie , Clima Tropical
5.
Ecol Appl ; 20(4): 1136-47, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20597296

RESUMO

Knowledge of succession rates and pathways is crucial for devising restoration strategies for highly disturbed ecosystems such as surface-mined land. As these processes have often only been described in qualitative terms, we used Markov models to quantify transitions between successional stages. However, Markov models are often considered not attractive for some reasons, such as model assumptions (e.g., stationarity in space and time, or the high expenditure of time required to estimate successional transitions in the field). Here we present a solution for converting multivariate ecological time series into transition matrices and demonstrate the applicability of this approach for a data set that resulted from monitoring the succession of sandy dry grassland in a post-mining landscape. We analyzed five transition matrices, four one-step matrices referring to specific periods of transition (1995-1998, 1998-2001, 2001-2004, 2004-2007), and one matrix for the whole study period (stationary model, 1995-2007). Finally, the stationary model was enhanced to a partly time-variable model. Applying the stationary and the time-variable models, we started a prediction well outside our calibration period, beginning with 100% bare soil in 1974 as the known start of the succession, and generated the coverage of 12 predefined vegetation types in three-year intervals. Transitions among vegetation types changed significantly in space and over time. While the probability of colonization was almost constant over time, the replacement rate tended to increase, indicating that the speed of succession accelerated with time or fluctuations became stronger. The predictions of both models agreed surprisingly well with the vegetation data observed more than two decades later. This shows that our dry grassland succession in a post-mining landscape can be adequately described by comparably simple types of Markov models, although some model assumptions have not been fulfilled and within-plot transitions have not been observed with point exactness. The major achievement of our proposed way to convert vegetation time series into transition matrices is the estimation of probability of events--a strength not provided by other frequently used statistical methods in vegetation science.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Cadeias de Markov , Mineração , Modelos Biológicos , Alemanha , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA