Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Microbiol ; 6(10): 1271-1278, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34497354

RESUMO

Genomics, combined with population mobility data, used to map importation and spatial spread of SARS-CoV-2 in high-income countries has enabled the implementation of local control measures. Here, to track the spread of SARS-CoV-2 lineages in Bangladesh at the national level, we analysed outbreak trajectory and variant emergence using genomics, Facebook 'Data for Good' and data from three mobile phone operators. We sequenced the complete genomes of 67 SARS-CoV-2 samples (collected by the IEDCR in Bangladesh between March and July 2020) and combined these data with 324 publicly available Global Initiative on Sharing All Influenza Data (GISAID) SARS-CoV-2 genomes from Bangladesh at that time. We found that most (85%) of the sequenced isolates were Pango lineage B.1.1.25 (58%), B.1.1 (19%) or B.1.36 (8%) in early-mid 2020. Bayesian time-scaled phylogenetic analysis predicted that SARS-CoV-2 first emerged during mid-February in Bangladesh, from abroad, with the first case of coronavirus disease 2019 (COVID-19) reported on 8 March 2020. At the end of March 2020, three discrete lineages expanded and spread clonally across Bangladesh. The shifting pattern of viral diversity in Bangladesh, combined with the mobility data, revealed that the mass migration of people from cities to rural areas at the end of March, followed by frequent travel between Dhaka (the capital of Bangladesh) and the rest of the country, disseminated three dominant viral lineages. Further analysis of an additional 85 genomes (November 2020 to April 2021) found that importation of variant of concern Beta (B.1.351) had occurred and that Beta had become dominant in Dhaka. Our interpretation that population mobility out of Dhaka, and travel from urban hotspots to rural areas, disseminated lineages in Bangladesh in the first wave continues to inform government policies to control national case numbers by limiting within-country travel.


Assuntos
COVID-19/transmissão , Telefone Celular/estatística & dados numéricos , Genoma Viral/genética , SARS-CoV-2/genética , Mídias Sociais/estatística & dados numéricos , Bangladesh/epidemiologia , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Genômica , Política de Saúde/legislação & jurisprudência , Humanos , Filogenia , Dinâmica Populacional/estatística & dados numéricos , SARS-CoV-2/classificação , Viagem/legislação & jurisprudência , Viagem/estatística & dados numéricos
2.
Science ; 372(6545)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33906968

RESUMO

The COVID-19 pandemic has affected cities particularly hard. Here, we provide an in-depth characterization of disease incidence and mortality and their dependence on demographic and socioeconomic strata in Santiago, a highly segregated city and the capital of Chile. Our analyses show a strong association between socioeconomic status and both COVID-19 outcomes and public health capacity. People living in municipalities with low socioeconomic status did not reduce their mobility during lockdowns as much as those in more affluent municipalities. Testing volumes may have been insufficient early in the pandemic in those places, and both test positivity rates and testing delays were much higher. We find a strong association between socioeconomic status and mortality, measured by either COVID-19-attributed deaths or excess deaths. Finally, we show that infection fatality rates in young people are higher in low-income municipalities. Together, these results highlight the critical consequences of socioeconomic inequalities on health outcomes.


Assuntos
COVID-19/epidemiologia , COVID-19/mortalidade , Classe Social , Fatores Socioeconômicos , Adulto , Fatores Etários , Idoso , COVID-19/diagnóstico , COVID-19/transmissão , Teste de Ácido Nucleico para COVID-19 , Chile/epidemiologia , Cidades/epidemiologia , Humanos , Incidência , Pessoa de Meia-Idade , Mortalidade , Distanciamento Físico , Pobreza , Saúde da População Urbana
3.
medRxiv ; 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33469598

RESUMO

The current coronavirus disease 2019 (COVID-19) pandemic has impacted dense urban populations particularly hard. Here, we provide an in-depth characterization of disease incidence and mortality patterns, and their dependence on demographic and socioeconomic strata in Santiago, a highly segregated city and the capital of Chile. We find that among all age groups, there is a strong association between socioeconomic status and both mortality -measured either by direct COVID-19 attributed deaths or excess deaths- and public health capacity. Specifically, we show that behavioral factors like human mobility, as well as health system factors such as testing volumes, testing delays, and test positivity rates are associated with disease outcomes. These robust patterns suggest multiple possibly interacting pathways that can explain the observed disease burden and mortality differentials: (i) in lower socioeconomic status municipalities, human mobility was not reduced as much as in more affluent municipalities; (ii) testing volumes in these locations were insufficient early in the pandemic and public health interventions were applied too late to be effective; (iii) test positivity and testing delays were much higher in less affluent municipalities, indicating an impaired capacity of the health-care system to contain the spread of the epidemic; and (iv) infection fatality rates appear much higher in the lower end of the socioeconomic spectrum. Together, these findings highlight the exacerbated consequences of health-care inequalities in a large city of the developing world, and provide practical methodological approaches useful for characterizing COVID-19 burden and mortality in other segregated urban centers.

4.
PLoS Genet ; 16(11): e1009101, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33196661

RESUMO

Characterising connectivity between geographically separated biological populations is a common goal in many fields. Recent approaches to understanding connectivity between malaria parasite populations, with implications for disease control efforts, have used estimates of relatedness based on identity-by-descent (IBD). However, uncertainty around estimated relatedness has not been accounted for. IBD-based relatedness estimates with uncertainty were computed for pairs of monoclonal Plasmodium falciparum samples collected from five cities on the Colombian-Pacific coast where long-term clonal propagation of P. falciparum is frequent. The cities include two official ports, Buenaventura and Tumaco, that are separated geographically but connected by frequent marine traffic. Fractions of highly-related sample pairs (whose classification using a threshold accounts for uncertainty) were greater within cities versus between. However, based on both highly-related fractions and on a threshold-free approach (Wasserstein distances between parasite populations) connectivity between Buenaventura and Tumaco was disproportionally high. Buenaventura-Tumaco connectivity was consistent with transmission events involving parasites from five clonal components (groups of statistically indistinguishable parasites identified under a graph theoretic framework). To conclude, P. falciparum population connectivity on the Colombian-Pacific coast abides by accessibility not isolation-by-distance, potentially implicating marine traffic in malaria transmission with opportunities for targeted intervention. Further investigations are required to test this hypothesis. For the first time in malaria epidemiology (and to our knowledge in ecological and epidemiological studies more generally), we account for uncertainty around estimated relatedness (an important consideration for studies that plan to use genotype versus whole genome sequence data to estimate IBD-based relatedness); we also use threshold-free methods to compare parasite populations and identify clonal components. Threshold-free methods are especially important in analyses of malaria parasites and other recombining organisms with mixed mating systems where thresholds do not have clear interpretation (e.g. due to clonal propagation) and thus undermine the cross-comparison of studies.


Assuntos
Genoma de Protozoário/genética , Malária Falciparum/parasitologia , Modelos Genéticos , Plasmodium falciparum/genética , Colômbia/epidemiologia , Frequência do Gene , Técnicas de Genotipagem , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Cadeias de Markov , Plasmodium falciparum/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Reprodução Assexuada/genética , Análise Espaço-Temporal , Incerteza
5.
Nat Commun ; 11(1): 4674, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938924

RESUMO

SARS-CoV-2-related mortality and hospitalizations differ substantially between New York City neighborhoods. Mitigation efforts require knowing the extent to which these disparities reflect differences in prevalence and understanding the associated drivers. Here, we report the prevalence of SARS-CoV-2 in New York City boroughs inferred using tests administered to 1,746 pregnant women hospitalized for delivery between March 22nd and May 3rd, 2020. We also assess the relationship between prevalence and commuting-style movements into and out of each borough. Prevalence ranged from 11.3% (95% credible interval [8.9%, 13.9%]) in Manhattan to 26.0% (15.3%, 38.9%) in South Queens, with an estimated city-wide prevalence of 15.6% (13.9%, 17.4%). Prevalence was lowest in boroughs with the greatest reductions in morning movements out of and evening movements into the borough (Pearson R = -0.88 [-0.52, -0.99]). Widespread testing is needed to further specify disparities in prevalence and assess the risk of future outbreaks.


Assuntos
Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Características de Residência/estatística & dados numéricos , Meios de Transporte/estatística & dados numéricos , Adolescente , Adulto , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , Feminino , Disparidades nos Níveis de Saúde , Humanos , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , Gestantes , Prevalência , SARS-CoV-2 , Adulto Jovem
6.
medRxiv ; 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32511610

RESUMO

Background: The spread of Coronavirus Disease 2019 (COVID-19) across the United States confirms that not all Americans are equally at risk of infection, severe disease, or mortality. A range of intersecting biological, demographic, and socioeconomic factors are likely to determine an individual's susceptibility to COVID-19. These factors vary significantly across counties in the United States, and often reflect the structural inequities in our society. Recognizing this vast inter-county variation in risks will be critical to mounting an adequate response strategy. Methods and Findings: Using publicly available county-specific data we identified key biological, demographic, and socioeconomic factors influencing susceptibility to COVID-19, guided by international experiences and consideration of epidemiological parameters of importance. We created bivariate county-level maps to summarize examples of key relationships across these categories, grouping age and poverty; comorbidities and lack of health insurance; proximity, density and bed capacity; and race and ethnicity, and premature death. We have also made available an interactive online tool that allows public health officials to query risk factors most relevant to their local context.Our data demonstrate significant inter-county variation in key epidemiological risk factors, with a clustering of counties in certain states, which will result in an increased demand on their public health system. While the East and West coast cities are particularly vulnerable owing to their densities (and travel routes), a large number of counties in the Southeastern states have a high proportion of at-risk populations, with high levels of poverty, comorbidities, and premature death at baseline, and low levels of health insurance coverage.The list of variables we have examined is by no means comprehensive, and several of them are interrelated and magnify underlying vulnerabilities. The online tool allows readers to explore additional combinations of risk factors, set categorical thresholds for each covariate, and filter counties above different population thresholds. Conclusion: COVID-19 responses and decision making in the United States remain decentralized. Both the federal and state governments will benefit from recognizing high intra-state, inter-county variation in population risks and response capacity. Many of the factors that are likely to exacerbate the burden of COVID-19 and the demand on healthcare systems are the compounded result of long-standing structural inequalities in US society. Strategies to protect those in the most vulnerable counties will require urgent measures to better support communities' attempts at social distancing and to accelerate cooperation across jurisdictions to supply personnel and equipment to counties that will experience high demand.

7.
Lancet Infect Dis ; 20(9): 1025-1033, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32445710

RESUMO

BACKGROUND: Voluntary individual quarantine and voluntary active monitoring of contacts are core disease control strategies for emerging infectious diseases such as COVID-19. Given the impact of quarantine on resources and individual liberty, it is vital to assess under what conditions individual quarantine can more effectively control COVID-19 than active monitoring. As an epidemic grows, it is also important to consider when these interventions are no longer feasible and broader mitigation measures must be implemented. METHODS: To estimate the comparative efficacy of individual quarantine and active monitoring of contacts to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we fit a stochastic branching model to reported parameters for the dynamics of the disease. Specifically, we fit a model to the incubation period distribution (mean 5·2 days) and to two estimates of the serial interval distribution: a shorter one with a mean serial interval of 4·8 days and a longer one with a mean of 7·5 days. To assess variable resource settings, we considered two feasibility settings: a high-feasibility setting with 90% of contacts traced, a half-day average delay in tracing and symptom recognition, and 90% effective isolation; and a low-feasibility setting with 50% of contacts traced, a 2-day average delay, and 50% effective isolation. FINDINGS: Model fitting by sequential Monte Carlo resulted in a mean time of infectiousness onset before symptom onset of 0·77 days (95% CI -1·98 to 0·29) for the shorter serial interval, and for the longer serial interval it resulted in a mean time of infectiousness onset after symptom onset of 0·51 days (95% CI -0·77 to 1·50). Individual quarantine in high-feasibility settings, where at least 75% of infected contacts are individually quarantined, contains an outbreak of SARS-CoV-2 with a short serial interval (4·8 days) 84% of the time. However, in settings where the outbreak continues to grow (eg, low-feasibility settings), so too will the burden of the number of contacts traced for active monitoring or quarantine, particularly uninfected contacts (who never develop symptoms). When resources are prioritised for scalable interventions such as physical distancing, we show active monitoring or individual quarantine of high-risk contacts can contribute synergistically to mitigation efforts. Even under the shorter serial interval, if physical distancing reduces the reproductive number to 1·25, active monitoring of 50% of contacts can result in overall outbreak control (ie, effective reproductive number <1). INTERPRETATION: Our model highlights the urgent need for more data on the serial interval and the extent of presymptomatic transmission to make data-driven policy decisions regarding the cost-benefit comparisons of individual quarantine versus active monitoring of contacts. To the extent that these interventions can be implemented, they can help mitigate the spread of SARS-CoV-2. FUNDING: National Institute of General Medical Sciences, National Institutes of Health.


Assuntos
Betacoronavirus/isolamento & purificação , Busca de Comunicante , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças/prevenção & controle , Modelos Teóricos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Quarentena , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Monitoramento Epidemiológico , Humanos , Método de Monte Carlo , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Programas Voluntários
8.
BMJ Open ; 9(11): e029373, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31748287

RESUMO

OBJECTIVE: Decompose the US black/white inequality in premature mortality into shared and group-specific risks to better inform health policy. SETTING: All 50 US states and the District of Columbia, 2010 to 2015. PARTICIPANTS: A total of 2.85 million non-Hispanic white and 762 639 non-Hispanic black US-resident decedents. PRIMARY AND SECONDARY OUTCOME MEASURES: The race-specific county-level relative risks for US blacks and whites, separately, and the risk ratio between groups. RESULTS: There is substantial geographic variation in premature mortality for both groups and the risk ratio between groups. After adjusting for median household income, county-level relative risks ranged from 0.46 to 2.04 (median: 1.03) for whites and from 0.31 to 3.28 (median: 1.15) for blacks. County-level risk ratios (black/white) ranged from 0.33 to 4.56 (median: 1.09). Half of the geographic variation in white premature mortality was shared with blacks, while only 15% of the geographic variation in black premature mortality was shared with whites. Non-Hispanic blacks experience substantial geographic variation in premature mortality that is not shared with whites. Moreover, black-specific geographic variation was not accounted for by median household income. CONCLUSION: Understanding geographic variation in mortality is crucial to informing health policy; however, estimating mortality is difficult at small spatial scales or for small subpopulations. Bayesian joint spatial models ameliorate many of these issues and can provide a nuanced decomposition of risk. Using premature mortality as an example application, we show that Bayesian joint spatial models are a powerful tool as researchers grapple with disentangling neighbourhood contextual effects and sociodemographic compositional effects of an area when evaluating health outcomes. Further research is necessary in fully understanding when and how these models can be applied in an epidemiological setting.


Assuntos
Negro ou Afro-Americano/estatística & dados numéricos , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Disparidades nos Níveis de Saúde , Mortalidade Prematura/etnologia , População Branca/estatística & dados numéricos , Feminino , Humanos , Masculino , Mortalidade Prematura/tendências , Pobreza/estatística & dados numéricos , Análise Espacial , Estados Unidos/epidemiologia
9.
Prehosp Disaster Med ; 34(5): 557-562, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31477186

RESUMO

Disasters, such as cyclones, create conditions that increase the risk of infectious disease outbreaks. Epidemic forecasts can be valuable for targeting highest risk populations before an outbreak. The two main barriers to routine use of real-time forecasts include scientific and operational challenges. First, accuracy may be limited by availability of data and the uncertainty associated with the inherently stochastic processes that determine when and where outbreaks happen and spread. Second, even if data are available, the appropriate channels of communication may prevent their use for decision making.In April 2019, only six weeks after Cyclone Idai devastated Mozambique's central region and sparked a cholera outbreak, Cyclone Kenneth severely damaged northern areas of the country. By June 10, a total of 267 cases of cholera were confirmed, sparking a vaccination campaign. Prior to Kenneth's landfall, a team of academic researchers, humanitarian responders, and health agencies developed a simple model to forecast areas at highest risk of a cholera outbreak. The model created risk indices for each district using combinations of four metrics: (1) flooding data; (2) previous annual cholera incidence; (3) sensitivity of previous outbreaks to the El Niño-Southern Oscillation cycle; and (4) a diffusion (gravity) model to simulate movement of infected travelers. As information on cases became available, the risk model was continuously updated. A web-based tool was produced, which identified highest risk populations prior to the cyclone and the districts at-risk following the start of the outbreak.The model prior to Kenneth's arrival using the metrics of previous incidence, projected flood, and El Niño sensitivity accurately predicted areas at highest risk for cholera. Despite this success, not all data were available at the scale at which the vaccination campaign took place, limiting the model's utility, and the extent to which the forecasts were used remains unclear. Here, the science behind these forecasts and the organizational structure of this collaborative effort are discussed. The barriers to the routine use of forecasts in crisis settings are highlighted, as well as the potential for flexible teams to rapidly produce actionable insights for decision making using simple modeling tools, both before and during an outbreak.


Assuntos
Cólera/epidemiologia , Tempestades Ciclônicas , Surtos de Doenças/prevenção & controle , Cólera/prevenção & controle , Demografia , Planejamento em Desastres , Previsões , Humanos , Incidência , Moçambique/epidemiologia , Fatores de Risco , Gestão de Riscos
10.
N Engl J Med ; 379(2): 162-170, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-29809109

RESUMO

BACKGROUND: Quantifying the effect of natural disasters on society is critical for recovery of public health services and infrastructure. The death toll can be difficult to assess in the aftermath of a major disaster. In September 2017, Hurricane Maria caused massive infrastructural damage to Puerto Rico, but its effect on mortality remains contentious. The official death count is 64. METHODS: Using a representative, stratified sample, we surveyed 3299 randomly chosen households across Puerto Rico to produce an independent estimate of all-cause mortality after the hurricane. Respondents were asked about displacement, infrastructure loss, and causes of death. We calculated excess deaths by comparing our estimated post-hurricane mortality rate with official rates for the same period in 2016. RESULTS: From the survey data, we estimated a mortality rate of 14.3 deaths (95% confidence interval [CI], 9.8 to 18.9) per 1000 persons from September 20 through December 31, 2017. This rate yielded a total of 4645 excess deaths during this period (95% CI, 793 to 8498), equivalent to a 62% increase in the mortality rate as compared with the same period in 2016. However, this number is likely to be an underestimate because of survivor bias. The mortality rate remained high through the end of December 2017, and one third of the deaths were attributed to delayed or interrupted health care. Hurricane-related migration was substantial. CONCLUSIONS: This household-based survey suggests that the number of excess deaths related to Hurricane Maria in Puerto Rico is more than 70 times the official estimate. (Funded by the Harvard T.H. Chan School of Public Health and others.).


Assuntos
Tempestades Ciclônicas , Desastres/estatística & dados numéricos , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Mortalidade , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Causas de Morte , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade Prematura , Porto Rico/epidemiologia , Inquéritos e Questionários , Adulto Jovem
11.
Am J Trop Med Hyg ; 92(4): 811-817, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25667053

RESUMO

In addition to being effective, fast-acting, and well tolerated, artemisinin-based combination therapies (ACTs) are able to kill certain transmission stages of the malaria parasite. However, the population-level impacts of ACTs on reducing malaria transmission have been difficult to assess. In this study on the history of malaria control in Vietnam, we assemble annual reporting on malaria case counts, coverage with insecticide-treated nets (ITN) and indoor residual spraying (IRS), and drug purchases by provincial malaria control programs from 1991 to 2010 in Vietnam's 20 southern provinces. We observe a significant negative association between artemisinin use and malaria incidence, with a 10% absolute increase in the purchase proportion of artemisinin-containing regimens being associated with a 29.1% (95% confidence interval: 14.8-41.0%) reduction in slide-confirmed malaria incidence, after accounting for changes in urbanization, ITN/IRS coverage, and two indicators of health system capacity. One budget-related indicator of health system capacity was found to have a smaller association with malaria incidence, and no other significant factors were found. Our findings suggest that including an artemisinin component in malaria drug regimens was strongly associated with reduced malaria incidence in southern Vietnam, whereas changes in urbanization and coverage with ITN or IRS were not.


Assuntos
Anti-Infecciosos/administração & dosagem , Artemisininas/administração & dosagem , Malária/epidemiologia , Controle de Mosquitos , Plasmodium/efeitos dos fármacos , Animais , Administração de Caso , Intervalos de Confiança , Culicidae/parasitologia , Humanos , Incidência , Insetos Vetores/parasitologia , Mosquiteiros Tratados com Inseticida , Malária/tratamento farmacológico , Malária/transmissão , Modelos Estatísticos , Vietnã/epidemiologia
12.
J R Soc Interface ; 10(81): 20120986, 2013 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-23389897

RESUMO

Mobile phone data are increasingly being used to quantify the movements of human populations for a wide range of social, scientific and public health research. However, making population-level inferences using these data is complicated by differential ownership of phones among different demographic groups that may exhibit variable mobility. Here, we quantify the effects of ownership bias on mobility estimates by coupling two data sources from the same country during the same time frame. We analyse mobility patterns from one of the largest mobile phone datasets studied, representing the daily movements of nearly 15 million individuals in Kenya over the course of a year. We couple this analysis with the results from a survey of socioeconomic status, mobile phone ownership and usage patterns across the country, providing regional estimates of population distributions of income, reported airtime expenditure and actual airtime expenditure across the country. We match the two data sources and show that mobility estimates are surprisingly robust to the substantial biases in phone ownership across different geographical and socioeconomic groups.


Assuntos
Telefone Celular/estatística & dados numéricos , Modelos Biológicos , Atividade Motora/fisiologia , Viés de Seleção , Humanos , Quênia , Fatores Socioeconômicos
13.
PLoS One ; 7(4): e35319, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558140

RESUMO

The rapid adoption of mobile phone technologies in Africa is offering exciting opportunities for engaging with high-risk populations through mHealth programs, and the vast volumes of behavioral data being generated as people use their phones provide valuable data about human behavioral dynamics in these regions. Taking advantage of these opportunities requires an understanding of the penetration of mobile phones and phone usage patterns across the continent, but very little is known about the social and geographical heterogeneities in mobile phone ownership among African populations. Here, we analyze a survey of mobile phone ownership and usage across Kenya in 2009 and show that distinct regional, gender-related, and socioeconomic variations exist, with particularly low ownership among rural communities and poor people. We also examine patterns of phone sharing and highlight the contrasting relationships between ownership and sharing in different parts of the country. This heterogeneous penetration of mobile phones has important implications for the use of mobile technologies as a source of population data and as a public health tool in sub-Saharan Africa.


Assuntos
Telefone Celular/estatística & dados numéricos , Demografia , Modelos Biológicos , Propriedade , Escolaridade , Humanos , Quênia , Modelos Logísticos , Fatores Sexuais , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA