Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Health ; 23(1): 13, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281011

RESUMO

Once an external factor has been deemed likely to influence human health and a dose response function is available, an assessment of its health impact or that of policies aimed at influencing this and possibly other factors in a specific population can be obtained through a quantitative risk assessment, or health impact assessment (HIA) study. The health impact is usually expressed as a number of disease cases or disability-adjusted life-years (DALYs) attributable to or expected from the exposure or policy. We review the methodology of quantitative risk assessment studies based on human data. The main steps of such studies include definition of counterfactual scenarios related to the exposure or policy, exposure(s) assessment, quantification of risks (usually relying on literature-based dose response functions), possibly economic assessment, followed by uncertainty analyses. We discuss issues and make recommendations relative to the accuracy and geographic scale at which factors are assessed, which can strongly influence the study results. If several factors are considered simultaneously, then correlation, mutual influences and possibly synergy between them should be taken into account. Gaps or issues in the methodology of quantitative risk assessment studies include 1) proposing a formal approach to the quantitative handling of the level of evidence regarding each exposure-health pair (essential to consider emerging factors); 2) contrasting risk assessment based on human dose-response functions with that relying on toxicological data; 3) clarification of terminology of health impact assessment and human-based risk assessment studies, which are actually very similar, and 4) other technical issues related to the simultaneous consideration of several factors, in particular when they are causally linked.


Assuntos
Projetos de Pesquisa , Medição de Risco , Medição de Risco/métodos
2.
Int J Hyg Environ Health ; 249: 114139, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870229

RESUMO

One of the aims of the European Human Biomonitoring Initiative, HBM4EU, was to provide examples of and good practices for the effective use of human biomonitoring (HBM) data in human health risk assessment (RA). The need for such information is pressing, as previous research has indicated that regulatory risk assessors generally lack knowledge and experience of the use of HBM data in RA. By recognising this gap in expertise, as well as the added value of incorporating HBM data into RA, this paper aims to support the integration of HBM into regulatory RA. Based on the work of the HBM4EU, we provide examples of different approaches to including HBM in RA and in estimations of the environmental burden of disease (EBoD), the benefits and pitfalls involved, information on the important methodological aspects to consider, and recommendations on how to overcome obstacles. The examples are derived from RAs or EBoD estimations made under the HBM4EU for the following HBM4EU priority substances: acrylamide, o-toluidine of the aniline family, aprotic solvents, arsenic, bisphenols, cadmium, diisocyanates, flame retardants, hexavalent chromium [Cr(VI)], lead, mercury, mixture of per-/poly-fluorinated compounds, mixture of pesticides, mixture of phthalates, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), and the UV-filter benzophenone-3. Although the RA and EBoD work presented here is not intended to have direct regulatory implications, the results can be useful for raising awareness of possibly needed policy actions, as newly generated HBM data from HBM4EU on the current exposure of the EU population has been used in many RAs and EBoD estimations.


Assuntos
Monitoramento Biológico , Mercúrio , Humanos , Monitoramento Ambiental/métodos , Políticas , Medição de Risco
3.
Int J Hyg Environ Health ; 234: 113747, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33862487

RESUMO

Cadmium (Cd) is a toxic heavy metal widespread in the environment leading to human exposure in particular through diet (when smoking is excluded), as documented by recent human biomonitoring (HBM) surveys. Exposure to Cd at environmental low-exposure levels has been associated with adverse effects such as renal toxicity and more recently bone effects. The implication, even if limited, of Cd in the etiology of osteoporosis can be of high importance at the population level given the significant prevalence of osteoporosis and the ubiquitous and life-long exposure to Cd. Therefore, the osteoporosis cases attributable to Cd exposure was estimated in three European countries (Belgium, France and Spain), based on measured urinary Cd levels from HBM studies conducted in these countries. The targeted population was women over 55 years old, for which risk levels associated with environmental Cd exposure were available. Around 23% of the cases were attributed to Cd exposure. Moreover, in a prospective simulation approach of lifelong urinary Cd concentrations assuming different intakes scenarios, future osteoporosis attributable cases were calculated, based on urinary Cd levels measured in women aged under 55. Between 6 and 34% of the considered populations under 55 years were at risk for osteoporosis. Finally, the costs associated to the burden of osteoporosis-related fractures attributable to Cd for each country targeted in this paper were assessed, standing for a major contributing role of Cd exposure in the overall social costs related to osteoporosis. Absolute costs ranged between 0.12 (low estimate in Belgium) and 2.6 billion Euros (high estimate in France) in women currently over 55 years old and at risk for fractures. Our results support the importance of reducing exposure of the general population to Cd.


Assuntos
Cádmio , Osteoporose , Bélgica/epidemiologia , Exposição Ambiental/análise , Feminino , França/epidemiologia , Humanos , Pessoa de Meia-Idade , Osteoporose/epidemiologia , Estudos Prospectivos , Espanha/epidemiologia
4.
Environ Health ; 18(1): 113, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881883

RESUMO

BACKGROUND: Recent lead (Pb) exposure reduction strategies enabled to lower children's blood lead levels (B-Pb) worldwide. This study reports the estimated intelligence gain and social cost savings attributable to recent exposure reduction based on reported B-Pb levels observed in adolescents sampled within the framework of the Flemish Environment and Health Studies (FLEHS, Belgium), i.e. in 2003-2004 (FLEHSI), in 2008-2009 (FLEHSII), and in 2013-2014 (FLEHSIII). METHODS: Intelligence Quotient (IQ) loss per 100,000 individuals - attributable to B-Pb above 20 µg/L - was estimated based on widely accepted dose response functions between children's B-Pb and IQ (- 1.88 IQ points for a duplication in B-Pb from 20 µg/L onwards; 95% Confidence Interval (CI): - 1.16;-2.59) and B-Pb exposure distribution parameters of FLEHS studies. The results were translated to the Flemish population of 15-year-olds. Given a 3-year time gap between subsequent sampling periods, the exposure distribution of each study was assumed 3 years prior to the study as well. Economic impact was estimated based on expected decrease in lifetime earnings (€ 19,464 per decreasing IQ point in 2018). RESULTS: The percentage of the adolescent population exceeding a B-Pb of 20 µg/L decreased from 57% (FLEHSI) to 23% (FLEHSII), and even further to 2.5% (FLEHSIII). The estimated IQ loss per 100,000 individuals was 94,280 (95% CI: 58,427-130,138) in FLEHSI, 14,993 (95% CI: 9289-20,695) in FLEHSII, and 976 (95% CI: 604-1347) in FLEHSIII. This translates into a total loss of 378,962 (95%CI: 234,840-523,091) IQ points within the Flemish population of 15-year-olds between 2000 and 2014. Assuming that current exposure levels do not reincrease, the expected IQ loss during the subsequent period of 15 years is estimated to be maximally 10,275 (95%CI: 6363-14,182) points. CONCLUSIONS: 7176 (95%CI: 4447-9905) million € of social cost savings were achieved by Pb reduction strategies in Flanders over 15 years. If current exposure levels further reduce to B-Pb below 20 µg/L for the whole population, social cost savings may increase up to 7376 (95%CI: 4571-10,181) million €. Given the relatively low lead contamination in Flanders, the global impact of ongoing reduction strategies is expected to be tremendous.


Assuntos
Exposição Ambiental/prevenção & controle , Poluentes Ambientais/sangue , Poluição Ambiental/prevenção & controle , Testes de Inteligência/estatística & dados numéricos , Inteligência , Chumbo/sangue , Adolescente , Bélgica , Feminino , Humanos , Inteligência/efeitos dos fármacos , Masculino
5.
Int J Hyg Environ Health ; 222(5): 727-737, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31176761

RESUMO

Human biomonitoring (HBM) is an important tool to survey the internal exposure of humans which represents the real life chemical body burden to chemicals and/or their metabolites. It results from total exposure to chemical substances from different sources and via different routes. These substances may be regulated under different legislative frameworks on chemicals (e.g., environmental, occupational, food safety etc). In occupational health, HBM has long traditions to control the exposures at workplaces. By providing accurate data on internal exposure, HBM data can improve human health risk assessment (RA) for both the general population and workers. Although the past few years have shown good examples on the use of HBM in the RA of chemicals, there is still quite some work to be done to improve its use in a regulatory RA. Under the scope of the European Human Biomonitoring Initiative (project HBM4EU, 2017-2021), the current study reviews the state-of-the-art of HBM use in chemicals RA with a special focus in Europe, and attempts to identify hurdles and challenges faced by regulators. To gather information on the use of HBM, including the availability of guidance on how to use it in RA, the RA schemes applied by different European or international organizations were analysed. Examples of such use were identified for a few selected groups of chemicals of concern for human health. In addition, we present the results of a survey, aimed at collecting information from national regulatory risk assessors on their day-to-day RA practices, the use of HBM data, and the obstacles and challenges related to their use. The results evidenced and explained some of the current obstacles of using HBM data in RA. These included the lack of HBM guidance values or biomonitoring equivalents (BEs), limited toxicokinetic information to support the interpretation of HBM data and, in the occupational health and safety (OSH) field, the lack of legal enforcement. Therefore, to support the integration of HBM in regulatory RA, we recommend, on one hand, the elaboration of a EU level guidance on the use of HBM in RA and, on the other hand, the continuation of research efforts to integrate HBM with new RA approaches using in vitro/in silico data and Adverse Outcome Pathways (AOPs).


Assuntos
Monitoramento Biológico , Previsões , Medição de Risco/tendências , Exposição Ambiental/análise , Poluentes Ambientais/toxicidade , Europa (Continente)/epidemiologia , Humanos , Medição de Risco/métodos , Organização Mundial da Saúde
6.
Artigo em Inglês | MEDLINE | ID: mdl-30544905

RESUMO

Research on the environment, health, and well-being nexus (EHWB) is shifting from a silo toward a systemic approach that includes the socio-economic context. To disentangle further the complex interplay between the socio-exposome and internal chemical exposure, we performed a meta-analysis of human biomonitoring (HBM) studies with internal exposure data on per-and polyfluoroalkyl substances (PFASs) and detailed information on risk factors, including descriptors of socio-economic status (SES) of the study population. PFASs are persistent in nature, and some have endocrine-disrupting properties. Individual studies have shown that HBM biomarker concentrations of PFASs generally increase with SES indicators, e.g., for income. Based on a meta-analysis (five studies) of the associations between PFASs and SES indicators, the magnitude of the association could be estimated. For the SES indicator income, changes in income were expressed by a factor change, which was corrected by the Gini coefficient to take into account the differences in income categories between studies, and the income range between countries. For the SES indicator education, we had to conclude that descriptors (

Assuntos
Exposição Ambiental , Poluentes Ambientais/efeitos adversos , Fluorocarbonos/efeitos adversos , Nível de Saúde , Classe Social , Monitoramento Ambiental , Humanos , Fatores de Risco
7.
Artigo em Inglês | MEDLINE | ID: mdl-30248963

RESUMO

The European Union's 7th Environmental Action Programme (EAP) aims to assess and minimize environmental health risks from the use of hazardous chemicals by 2020. From this angle, policy questions like whether an implemented policy to reduce chemical exposure has had an effect over time, whether the health of people in specific regions or subpopulations is at risk, or whether the body burden of chemical substances (the internal exposure) varies with, for example, time, country, sex, age, or socio-economic status, need to be answered. Indicators can help to synthesize complex scientific information into a few key descriptors with the purpose of providing an answer to a non-expert audience. Human biomonitoring (HBM) indicators at the European Union (EU) level are unfortunately lacking. Within the Horizon2020 European Human Biomonitoring project HBM4EU, an approach to develop European HBM indicators was worked out. To learn from and ensure interoperability with other European indicators, 15 experts from the HBM4EU project (German Umweltbundesamt (UBA), Flemish research institute VITO, University of Antwerp, European Environment Agency (EEA)), and the World Health Organization (WHO), European Core Health Indicator initiative (ECHI), Eurostat, Swiss ETH Zurich and the Czech environmental institute CENIA, and contributed to a workshop, held in June 2017 at the EEA in Copenhagen. First, selection criteria were defined to evaluate when and if results of internal chemical exposure measured by HBM, need to be translated into a European HBM-based indicator. Two main aspects are the HBM indicator's relevance for policy, society, health, and the quality of the biomarker data (availability, comparability, ease of interpretation). Secondly, an approach for the calculation of the indicators was designed. Two types of indicators were proposed: 'sum indicators of internal exposure' derived directly from HBM biomarker concentrations and 'indicators for health risk', comparing HBM concentrations to HBM health-based guidance values (HBM HBGVs). In the latter case, both the percentage of the studied population exceeding the HBM HBGVs (PE) and the extent of exceedance (EE), calculated as the population's exposure level divided by the HBM HBGV, can be calculated. These indicators were applied to two examples of hazardous chemicals: bisphenol A (BPA) and per- and polyfluoroalkyl substances (PFASs), which both have high policy and societal relevance and for which high quality published data were available (DEMOCOPHES, Swedish monitoring campaign). European HBM indicators help to summarize internal exposure to chemical substances among the European population and communicate to what degree environmental policies are successful in keeping internal exposures sufficiently low. The main aim of HBM indicators is to allow follow-up of chemical safety in Europe.


Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Política Ambiental , Política de Saúde , Adolescente , Adulto , Criança , Europa (Continente) , União Europeia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Sci Total Environ ; 521-522: 359-71, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25863314

RESUMO

The paper describes the inhalation nickel (Ni) exposure of humans via the environment for the regional scale in the EU, together with a tiered approach for assessing additional local exposure from industrial emissions. The approach was designed, in the context of REACH, for the purpose of assessing and controlling emissions and air quality in the neighbourhood of Ni producers and downstream users. Two Derived No Effect Level (DNEL) values for chronic inhalation exposure to total Ni in PM10 (20 and 60ngNi/m(3)) were considered. The value of 20ngNi/m(3) is the current EU air quality guidance value. The value of 60ngNi/m(3) is derived here based on recently published Ni data (Oller et al., 2014). Both values are protective for respiratory toxicity and carcinogenicity but differ in the application of toxicokinetic adjustments and cancer threshold considerations. Estimates of air Ni concentrations at the European regional scale were derived from the database of the European Environment Agency. The 50th and 90th percentile regional exposures were below both DNEL values. To assess REACH compliance at the local scale, measured ambient air data are preferred but are often unavailable. A tiered approach for the use of modelled ambient air concentrations was developed, starting with the application of the default EUSES model and progressing to more sophisticated models. As an example, the tiered approach was applied to 33 EU Ni sulphate producers' and downstream users' sites. Applying the EUSES model demonstrates compliance with a DNEL of 60ngNi/m(3) for the majority of sites, while the value of the refined modelling is demonstrated when a DNEL of 20ngNi/m(3) is considered. The proposed approach, applicable to metals in general, can be used in the context of REACH, for refining the risk characterisation and guiding the selection of risk management measures.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Exposição por Inalação/estatística & dados numéricos , Níquel/análise , Europa (Continente) , Humanos , Modelos Teóricos
9.
Environ Health Perspect ; 122(5): 439-46, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24584099

RESUMO

BACKGROUND: Environmental health effects vary considerably with regard to their severity, type of disease, and duration. Integrated measures of population health, such as environmental burden of disease (EBD), are useful for setting priorities in environmental health policies and research. This review is a summary of the full Environmental Burden of Disease in European countries (EBoDE) project report. OBJECTIVES: The EBoDE project was set up to provide assessments for nine environmental risk factors relevant in selected European countries (Belgium, Finland, France, Germany, Italy, and the Netherlands). METHODS: Disability-adjusted life years (DALYs) were estimated for benzene, dioxins, secondhand smoke, formaldehyde, lead, traffic noise, ozone, particulate matter (PM2.5), and radon, using primarily World Health Organization data on burden of disease, (inter)national exposure data, and epidemiological or toxicological risk estimates. Results are presented here without discounting or age-weighting. RESULTS: About 3-7% of the annual burden of disease in the participating countries is associated with the included environmental risk factors. Airborne particulate matter (diameter ≤ 2.5 µm; PM2.5) is the leading risk factor associated with 6,000-10,000 DALYs/year and 1 million people. Secondhand smoke, traffic noise (including road, rail, and air traffic noise), and radon had overlapping estimate ranges (600-1,200 DALYs/million people). Some of the EBD estimates, especially for dioxins and formaldehyde, contain substantial uncertainties that could be only partly quantified. However, overall ranking of the estimates seems relatively robust. CONCLUSIONS: With current methods and data, environmental burden of disease estimates support meaningful policy evaluation and resource allocation, including identification of susceptible groups and targets for efficient exposure reduction. International exposure monitoring standards would enhance data quality and improve comparability.


Assuntos
Exposição Ambiental/análise , Poluição do Ar/análise , Efeitos Psicossociais da Doença , Europa (Continente) , Feminino , Humanos , Masculino , Material Particulado/análise , Fatores de Risco
10.
Sci Total Environ ; 419: 25-36, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22285091

RESUMO

This paper describes the indirect human exposure to Ni via the oral route for the regional scale in the EU, together with a method to assess additional local exposure from industrial emissions. The approach fills a gap in the generic REACH guidance which is inadequate for assessing indirect environmental exposure of metals. Estimates of regional scale Ni dietary intake were derived from Ni dietary studies performed in the EU. Typical and Reasonable Worst Case dietary Ni intakes for the general population in the EU were below the oral Derived No Effect Level (DNEL) of Ni sulfate for systemic effects. Estimates for the Ni dietary intake at the local scale take into account the influence of aerial Ni deposition and transfer from soil to crops grown near industrial plants emitting Ni. The additional dietary exposure via this local contribution was small. Despite the use of conservative parameters for these processes, this method may underestimate dietary exposure around older industrial sites because REACH guidance does not account for historical soil contamination. Nevertheless, the method developed here can also be used as a screening tool for community-based risk assessment, as it accounts for historical soil pollution. Nickel exposure via drinking water was derived from databases on Ni tap water quality. A small proportion of the EU population (<5%) is likely to be exposed to tap water exceeding the EU standard (20 µg Ni/l). Taking into account the relative gastrointestinal absorption of Ni from water (30%) versus from solid matrices (5%), water intake constitutes, after dietary intake, the second most important pathway for oral Ni intake. Incidental ingestion of Ni from soil/dust at the regional scale, and also at the local scale, was low in comparison with dietary intake.


Assuntos
Exposição Ambiental , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Níquel/toxicidade , Medição de Risco , Água Potável/análise , Poeira/análise , Poluentes Ambientais/análise , União Europeia , Feminino , Análise de Alimentos , Humanos , Masculino , Níquel/análise , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA