Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur Radiol ; 34(9): 5856-5865, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38388721

RESUMO

OBJECTIVE: This study analyzes the potential cost-effectiveness of integrating an artificial intelligence (AI)-assisted system into the differentiation of incidental renal lesions as benign or malignant on MR images during follow-up. MATERIALS AND METHODS: For estimation of quality-adjusted life years (QALYs) and lifetime costs, a decision model was created, including the MRI strategy and MRI + AI strategy. Model input parameters were derived from recent literature. Willingness to pay (WTP) was set to $100,000/QALY. Costs of $0 for the AI were assumed in the base-case scenario. Model uncertainty and costs of the AI system were assessed using deterministic and probabilistic sensitivity analysis. RESULTS: Average total costs were at $8054 for the MRI strategy and $7939 for additional use of an AI-based algorithm. The model yielded a cumulative effectiveness of 8.76 QALYs for the MRI strategy and of 8.77 for the MRI + AI strategy. The economically dominant strategy was MRI + AI. Deterministic and probabilistic sensitivity analysis showed high robustness of the model with the incremental cost-effectiveness ratio (ICER), which represents the incremental cost associated with one additional QALY gained, remaining below the WTP for variation of the input parameters. If increasing costs for the algorithm, the ICER of $0/QALY was exceeded at $115, and the defined WTP was exceeded at $667 for the use of the AI. CONCLUSIONS: This analysis, rooted in assumptions, suggests that the additional use of an AI-based algorithm may be a potentially cost-effective alternative in the differentiation of incidental renal lesions using MRI and needs to be confirmed in the future. CLINICAL RELEVANCE STATEMENT: These results hint at AI's the potential impact on diagnosing renal masses. While the current study urges careful interpretation, ongoing research is essential to confirm and seamlessly integrate AI into clinical practice, ensuring its efficacy in routine diagnostics. KEY POINTS: • This is a model-based study using data from literature where AI has been applied in the diagnostic workup of incidental renal lesions. • MRI + AI has the potential to be a cost-effective alternative in the differentiation of incidental renal lesions. • The additional use of AI can reduce costs in the diagnostic workup of incidental renal lesions.


Assuntos
Inteligência Artificial , Análise Custo-Benefício , Achados Incidentais , Neoplasias Renais , Imageamento por Ressonância Magnética , Anos de Vida Ajustados por Qualidade de Vida , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/economia , Neoplasias Renais/diagnóstico por imagem , Avaliação da Tecnologia Biomédica , Algoritmos , Feminino , Masculino
2.
Eur J Nucl Med Mol Imaging ; 49(11): 3870-3877, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35606526

RESUMO

BACKGROUND AND PURPOSE: Treatment of oral squamous cell carcinoma (OSCC) is based on clinical exam, biopsy, and a precise imaging-based TNM-evaluation. A high sensitivity and specificity for magnetic resonance imaging (MRI) and F-18 FDG PET/CT are reported for N-staging. Nevertheless, staging of oral squamous cell carcinoma is most often based on computed tomography (CT) scans. This study aims to evaluate cost-effectiveness of MRI and PET/CT compared to standard of care imaging in initial staging of OSCC within the US Healthcare System. METHODS: A decision model was constructed using quality-adjusted life years (QALYs) and overall costs of different imaging strategies including a CT of the head, neck, and the thorax, MRI of the neck with CT of the thorax, and whole body F-18 FDG PET/CT using Markov transition simulations for different disease states. Input parameters were derived from literature and willingness to pay (WTP) was set to US $100,000/QALY. Deterministic sensitivity analysis of diagnostic parameters and costs was performed. Monte Carlo modeling was used for probabilistic sensitivity analysis. RESULTS: In the base-case scenario, total costs were at US $239,628 for CT, US $240,001 for MRI, and US $239,131 for F-18 FDG PET/CT whereas the model yielded an effectiveness of 5.29 QALYs for CT, 5.30 QALYs for MRI, and 5.32 QALYs for F-18 FDG PET/CT respectively. F-18 FDG PET/CT was the most cost-effective strategy over MRI as well as CT, and MRI was the cost-effective strategy over CT. Deterministic and probabilistic sensitivity analysis showed high robustness of the model with incremental cost effectiveness ratio remaining below US $100,000/QALY for a wide range of variability of input parameters. CONCLUSION: F-18 FDG PET/CT is the most cost-effective strategy in the initial N-staging of OSCC when compared to MRI and CT. Despite less routine use, both whole body PET/CT and MRI are cost-effective modalities in the N-staging of OSCC. Based on these findings, the implementation of PET/CT for initial staging could be suggested to help reduce costs while increasing effectiveness in OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Análise Custo-Benefício , Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imageamento por Ressonância Magnética , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/patologia , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Tomografia Computadorizada por Raios X
3.
J Clin Med ; 10(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884172

RESUMO

Long-term health consequences in survivors of severe COVID-19 remain unclear. Eighteen COVID-19 patients admitted to the intensive care unit at the University Hospital Rechts der Isar, Munich, Germany, between 14 March and 23 June 2020, were prospectively followed-up at a median of 36, 75.5, 122 and 222 days after discharge. The health-related quality of life (HrQoL) (36-item Short Form Health Survey and St. George's Respiratory Questionnaire, SGRQ), cardiopulmonary function, laboratory parameters and chest imaging were assessed longitudinally. The HrQoL assessment revealed a reduced physical functioning, as well as increased SGRQ impact and symptoms scores that all improved over time but remained markedly impaired compared to the reference groups. The median radiological severity scores significantly declined; persistent abnormalities were found in 33.3% of the patients on follow-up. A reduced diffusion capacity was the most common abnormal pulmonary function parameter. The length of hospitalization correlated with role limitations due to physical problems, the SGRQ symptom and the impact score. In conclusion, in survivors of severe COVID-19, the pulmonary function and symptoms improve over time, but impairments in their physical function and diffusion capacity can persist over months. Longer follow-up studies with larger cohorts will be necessary to comprehensively characterize long-term sequelae upon severe COVID-19 and to identify patients at risk.

4.
Quant Imaging Med Surg ; 11(7): 3042-3050, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34249633

RESUMO

BACKGROUND: Wasting disease entities like cachexia or sarcopenia are associated with a decreasing muscle mass and changing muscle composition. For valid and reliable disease detection and monitoring diagnostic techniques offering quantitative musculature assessment are needed. Multi-detector computed tomography (MDCT) is a broadly available imaging modality allowing for muscle composition analysis. A major disadvantage of using MDCT for muscle composition assessment is the radiation exposure. In this study we evaluated the performance of different methods of radiation dose reduction for paravertebral muscle composition assessment. METHODS: MDCT scans of eighteen subjects (6 males, age: 71.5±15.9 years, and 12 females, age: 71.0±8.9 years) were retrospectively simulated as if they were acquired at 50%, 10%, 5%, and 3% of the original X-ray tube current or number of projections (i.e., sparse sampling). Images were reconstructed with a statistical iterative reconstruction (SIR) algorithm. Paraspinal muscles (psoas and erector spinae muscles) at the level of L4 were segmented in the original-dose images. Segmentations were superimposed on all low-dose scans and muscle density (MD) extracted. RESULTS: Sparse sampling derived mean MD showed no significant changes (P=0.57 and P=0.22) down to 5% of the original projections in the erector spinae and psoas muscles, respectively. All virtually reduced tube current series showed significantly different (P>0.05) mean MD in the psoas and erector spinae muscles as compared to the original dose except for the images of 5% of the original tube current in the erector spinae muscle. CONCLUSIONS: Our findings demonstrated the possibility of considerable radiation dose reduction using MDCT scans for assessing the composition of the paravertebral musculature. The sparse sampling approach seems to be promising and a potentially superior technique for dose reduction as compared to tube current reduction.

5.
Sci Rep ; 10(1): 11566, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665667

RESUMO

The purpose of this study was to evaluate a magnetic resonance imaging (MRI) protocol for direct visualization of the inferior alveolar nerve in the setting of mandibular fractures. Fifteen patients suffering from unilateral mandible fractures involving the inferior alveolar nerve (15 affected IAN and 15 unaffected IAN from contralateral side) were examined on a 3 T scanner (Elition, Philips Healthcare, Best, the Netherlands) and compared with 15 healthy volunteers (30 IAN in total). The sequence protocol consisted of a 3D STIR, 3D DESS and 3D T1 FFE sequence. Apparent nerve-muscle contrast-to-noise ratio (aNMCNR), apparent signal-to-noise ratio (aSNR), nerve diameter and fracture dislocation were evaluated by two radiologists and correlated with nerve impairment. Furthermore, dislocation as depicted by MRI was compared to computed tomography (CT) images. Patients with clinically evident nerve impairment showed a significant increase of aNMCNR, aSNR and nerve diameter compared to healthy controls and to the contralateral side (p < 0.05). Furthermore, the T1 FFE sequence allowed dislocation depiction comparable to CT. This prospective study provides a rapid imaging protocol using the 3D STIR and 3D T1 FFE sequence that can directly assess both mandible fractures and IAN damage. In patients with hypoesthesia following mandibular fractures, increased aNMCNR, aSNR and nerve diameter on MRI imaging may help identify patients with a risk of prolonged or permanent hypoesthesia at an early time.


Assuntos
Imageamento por Ressonância Magnética , Mandíbula/diagnóstico por imagem , Fraturas Mandibulares/diagnóstico por imagem , Nervo Mandibular/diagnóstico por imagem , Adolescente , Adulto , Feminino , Humanos , Masculino , Mandíbula/fisiopatologia , Fraturas Mandibulares/patologia , Nervo Mandibular/patologia , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Traumatismos do Nervo Trigêmeo/diagnóstico por imagem , Traumatismos do Nervo Trigêmeo/patologia , Adulto Jovem
6.
Eur J Radiol ; 125: 108867, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32065929

RESUMO

PURPOSE: To investigate paraspinal muscle characteristics and lumbar bone mineral density (BMD) and their associations in routine abdominal multi-detector computed tomography (MDCT) as well as the impact of osteoporotic vertebral fractures on such associations. METHOD: 116 patients (69.7 ± 8.1 years, 72 males) who underwent routine abdominal MDCT (oncological staging and/or follow-up for tumor recurrence) were retrospectively included and assigned to a fracture and control group (age- and gender-matched), depending on the presence or absence of lumbar osteoporotic vertebral fractures. BMD was derived from lumbar vertebrae using a conversion equation, and the cross-sectional area (CSA), CSA ratio (CSA psoas muscles divided by CSA erector spinae muscles), and muscle attenuation were measured for the psoas and erector spinae muscles at the levels L2 and L4/5 without dedicated software. RESULTS: Males showed significantly higher BMD, CSA, and CSA ratios at the levels L2 and L4/5, while females had decreased erector spinae muscle attenuation at L4/5 (p < 0.05). No significant differences between patients with versus without fractures were observed except for BMD (68.5 ± 37.2 mg/ml vs. 91.4 ± 26.8 mg/ml; p < 0.01). Age-adjusted partial correlation testing revealed significant correlations of BMD and the CSA ratio at level L4/5 (r = 0.20; p = 0.03), but not with muscle attenuation (p > 0.05). CONCLUSIONS: Paraspinal muscle characteristics and lumbar BMD can be assessed seamlessly in routine abdominal MDCT without dedicated software. There are level-dependent interactions between paraspinal muscle characteristics as well as lumbar BMD. Vertebral fracture status was independent of paraspinal muscle characteristics.


Assuntos
Densidade Óssea , Tomografia Computadorizada Multidetectores/métodos , Fraturas por Osteoporose/diagnóstico por imagem , Músculos Paraespinais/diagnóstico por imagem , Fraturas da Coluna Vertebral/diagnóstico por imagem , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/lesões , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA