Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 101(15): 6347-6354, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33969893

RESUMO

BACKGROUND: Vacuum package storage is commonly applied to reduce postharvest deterioration in minimally processed cassava roots. However, the influence of vacuum packaging conditions on root end-use quality is poorly understood. Hence, the effects of vacuum packaged storage at ambient, refrigerated and freezing temperatures on microflora, cassava tissue structure and starch extraction by wet milling were studied. RESULTS: Vacuum packaged storage temperature strongly affected cassava root quality. Minimal adverse effects were obtained with frozen storage. With refrigerated storage, there was negligible microbial growth but some disruption of the parenchyma cell wall structure suggestive of chilling injury. With ambient temperature storage, there was considerable Lactobacilli dominated fermentation. This caused substantial cell degradation, probably due to the production of extracellular cellulolytic and other cell wall degrading enzymes. A benefit of this cell wall breakdown was that it substantially improved starch extraction with wet milling from the stored cassava pieces; by 18% with pieces that had been ambient vacuum packaged and wet milled using a 2000 µm opening screen. However, ambient temperature storage resulted in some starch granule pitting due to the action of extracellular amylases from the fermenting microorganisms. CONCLUSION: The best vacuum packaging storage conditions for minimally processed cassava depends on application and cost. For short-term storage, refrigeration would be best for vegetable-type products. For several months storage, freezing is best. For wet milling applications, this could be combined with subsequent short-term ambient temperature storage as it improves starch extraction efficiency and could reduce distribution energy costs. © 2021 Society of Chemical Industry.


Assuntos
Embalagem de Alimentos/métodos , Manihot/química , Tubérculos/química , Amido/isolamento & purificação , Manipulação de Alimentos , Embalagem de Alimentos/economia , Embalagem de Alimentos/instrumentação , Armazenamento de Alimentos , Amido/análise , Temperatura , Vácuo
2.
J Food Prot ; 81(3): 472-481, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29474148

RESUMO

This study was conducted to estimate the hemolytic uremic syndrome (HUS) risk associated with consumption of producer-distributor bulk milk (PDBM) contaminated with Shiga toxin-producing Escherichia coli (STEC) in South Africa. Data were obtained from recently completed studies in South Africa taking into account prior collected prevalence data of STEC in raw and pasteurized PDBM and survey information from producer-distributor outlets and households. Inputs for the models were complemented with data from published and unpublished literature. A probabilistic exposure model was developed with Monte Carlo simulation in Excel add-in software using @Risk software. Hazard characterization was based on an exponential dose-response model to calculate the probability of illness from STEC infection in individuals 5 years and younger and individuals older than 5 years. The estimated mean STEC level was 0.12 CFU/mL (95% confidence interval [CI]: 0 to 1.2; σ = 0.34) for raw PDBM and 0.08 CFU/mL (95% CI: 0 to 1; σ = 0.27) for pasteurized PDBM. A higher risk of HUS cases per year was recorded in raw than in pasteurized PDBM and also in individuals younger than 5 years of age. For every 100,000 servings consumed, the expected median numbers of HUS cases per year from raw PDBM were 52 for 5 years and younger and 3.2 for older than 5 years. The median numbers of cases per year for pasteurized PDBM were 47 for 5 years and younger and 2.9 for older than 5 years. Sensitivity analysis revealed that serving volume and time taken to sell PDBM at producer-distributor outlets were the factors with the greatest impact on probability of illness. The models developed in this study are an example of risk assessments for milk produced and marketed from similar scenarios across the globe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA