RESUMO
The aim of the study was to evaluate the role of pseudocontinuous arterial spin labeling perfusion (pCASL-perfusion) in preoperative assessment of cerebral glioma grades. The study group consisted of 253 patients, aged 7-78 years with supratentorial gliomas (65 low-grade gliomas (LGG), 188 high-grade gliomas (HGG)). We used 3D pCASL-perfusion for each patient in order to calculate the tumor blood flow (TBF). We obtained maximal tumor blood flow (maxTBF) in small regions of interest (30 ± 10 mm2) and then normalized absolute maximum tumor blood flow (nTBF) to that of the contralateral normal-appearing white matter of the centrum semiovale. MaxTBF and nTBF values significantly differed between HGG and LGG groups (p < 0.001), as well as between patient groups separated by the grades (grade II vs. grade III) (p < 0.001). Moreover, we performed ROC-analysis which demonstrated high sensitivity and specificity in differentiating between HGG and LGG. We found significant differences for maxTBF and nTBF between grade III and IV gliomas, however, ROC-analysis showed low sensitivity and specificity. We did not observe a significant difference in TBF for astrocytomas and oligodendrogliomas. Our study demonstrates that 3D pCASL-perfusion as an effective diagnostic tool for preoperative differentiation of glioma grades.
Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Angiografia por Ressonância Magnética/estatística & dados numéricos , Imagem de Perfusão/estatística & dados numéricos , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/irrigação sanguínea , Criança , Feminino , Glioma/irrigação sanguínea , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estudos Retrospectivos , Adulto JovemRESUMO
OBJECTIVE: To analyze the differences of high-grade glioma subregions using magnetic resonance relaxometry with compilation of images (MAGiC) and arterial spin labeling (ASL), as well as to compare quantitative measurements of these techniques with morphological data. MATERIAL AND METHODS: The study enrolled 35 patients with newly diagnosed supratentorial gliomas (23 - grade IV, 12 - grade III). We measured relaxometric values (T1, T2, proton density), tumor blood flow (TBF) in glioma subregions and normal-appearing brain matter. Neuronavigation was intraoperatively used to obtain tissue samples from active tumor growth zone, perifocal infiltrative edema zone and adjacent brain matter along surgical approach. RESULTS: ASL perfusion revealed higher tumor blood flow (TBF) in active tumor growth region compared to perifocal infiltrative edema zone (p<0.01). Relaxometric values (T1, T2, proton density) in perifocal zone were higher (p<0.01) compared to adjacent intact white matter along surgical approach. However, there were no differences in TBF between these zones. Proton density in tumor-adjacent intact white matter was higher (p<0.01) compared to normal-appearing white matter in ipsilateral hemisphere. There was inverse correlation between T2 and TBF in active tumor growth zone (Spearman rank R= -0.58; p=0.0016). We found inverse correlation between T2 and Ki67 proliferative index and direct correlation between TBF and Ki67 in this zone. Nevertheless, these relationships were insignificant after multiple test adjustment. CONCLUSION: Our study advocates for complementary power of ASL perfusion and MR relaxometry in assessment of high-grade brain glioma subregions. More malignant tumor zones tend to have higher TBF and shorter T2. Further investigation is needed to prove the capability of MAGiC to reveal foci of increased relaxometric values in tumor-adjacent normal-appearing white matter.