Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chemosphere ; 336: 139273, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343639

RESUMO

Due to their uncontrolled use, plastics has become an environmental concern, not only for their varying dimension but also for the potential release of substances such as phthalates (PAEs) and non-phthalates (NPPs) into the water. Phthalates are the most common plasticizers of concern, but non-phthalate plasticizers such as di (2-ethylhexyl) terephthalate (DEHT) have also been lately found in the marine environment. Mytilus galloprovincialis is a well-known bioindicator of aquatic environments due to its ability to accumulate a wide variety of xenobiotics, including plasticizers. Hence, aim of this study was to evaluate the potential bioaccumulation and effects of the NPP DEHT on M. galloprovincialis. To this purpose, following exposure to DEHT at 1 mg/l (DEHT1) and 100 mg/l (DEHT100), its accumulation in tissues and its effects on total lipids and fatty acid (FA) composition, protein content, cell viability, ability to recover volume and changes in biomarkers of oxidative stress were assessed. Mussels were able to bioaccumulate DEHT in their tissues, with a statistically significant increase compared to the control organisms. Differences in FA composition were observed after exposure, since C16:0, C18:0, C20:5ω-3 and C22:6ω-3 were significantly decreased from control to exposed groups. As a result, total SFA, MUFA and PUFA were affected in DEHT-exposed groups. Also, total protein varied following DEHT exposure, and significantly decreased in the DEHT100-group. Considering the physiological responses, both DEHT-exposed groups lost their ability to return to the original volume of digestive gland (DG) cells. On the other hand, oxidative biomarkers in the gills and DG were not significantly affected by the DEHT exposure. Overall, this study showed for the first time that DEHT exposure differentially affect mussels, in their lipid and protein metabolism, as well as cellular parameters.


Assuntos
Mytilus , Plastificantes , Animais , Plastificantes/análise , Mytilus/metabolismo , Ácidos Graxos , Biomarcadores Ambientais
2.
Environ Pollut ; 331(Pt 1): 121878, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236591

RESUMO

The lack of data on the chronic effects of chloroacetanilide herbicide metabolites on non-target aquatic organisms creates a gap in knowledge about the comprehensive impacts of excessive and repeated pesticide use. Therefore, this study evaluates the long-term effects of propachlor ethanolic sulfonic acid (PROP-ESA) after 10 (T1) and 20 (T2) days at the environmental level of 3.5 µg.L-1 (E1) and its 10x fold multiply 35 µg.L-1 (E2) on a model organism Mytilus galloprovincialis. To this end, the effects of PROP-ESA usually showed a time- and dose-dependent trend, especially in its amount in soft mussel tissue. The bioconcentration factor increased from T1 to T2 in both exposure groups - from 2.12 to 5.30 in E1 and 2.32 to 5.48 in E2. Biochemical haemolymph profile and haemocyte viability were not affected by PROP-ESA exposure. In addition, the viability of digestive gland (DG) cells decreased only in E2 compared to control and E1 after T1. Moreover, malondialdehyde levels increased in E2 after T1 in gills, and DG, superoxidase dismutase activity and oxidatively modified proteins were not affected by PROP-ESA. Histopathological observation showed several damages to gills (e.g., increased vacuolation, over-production of mucus, loss of cilia) and DG (e.g., growing haemocyte trend infiltrations, alterations of tubules). This study revealed a potential risk of chloroacetanilide herbicide, propachlor, via its primary metabolite in the Bivalve bioindicator species M. galloprovincialis. Furthermore, considering the possibility of the biomagnification effect, the most prominent threat poses the ability of PROP-ESA to be accumulated in edible mussel tissues. Therefore, future research about the toxicity of pesticide metabolites alone or their mixtures is needed to gain comprehensive results about their impacts on living non-target organisms.


Assuntos
Herbicidas , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/metabolismo , Herbicidas/metabolismo , Acetamidas/toxicidade , Acetamidas/metabolismo , Brânquias/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA