Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 15(12): e0244318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370312

RESUMO

Inefficiency in urban land use is one of the problems caused by rapid urbanization. The UN Sustainable Development Goals (SDGs) indicator 11.3.1 is designed to test urban land use efficiency. This study employed geospatial and statistical data to compute land use efficiencies from 1990 to 2015 with five 5-year and ten 15-year intervals in Wukang, center of Deqing County, China. A flowchart was designed to extract the built-up lands from multiple data sources. The produced built-up lands were demonstrated to provide good accuracy by constructing an error matrix between the extracted and manually interpreted built-up lands as classified and reference images, respectively. By using the model provided by UN metadata to calculate SDG 11.3.1, the land use efficiencies from 1990 to 2015 were identified in Wukang. Our results indicate that the land use efficiency in Deqing County center is lower than the average of cities around the world, primarily because our in-situ study focused on a county center with larger rural regions than urban areas. Over the long term, urban land use becomes denser as the population grows, which will have a positive impact on the sustainability of urban development. This work is helpful for the local government to balance urban land consumption and population growth.


Assuntos
Desenvolvimento Sustentável/economia , Reforma Urbana/métodos , Urbanização/tendências , China , Cidades , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Humanos , Modelos Teóricos , Crescimento Demográfico , Desenvolvimento Sustentável/tendências , População Urbana/tendências , Reforma Urbana/tendências
2.
Sensors (Basel) ; 19(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614867

RESUMO

Sample size estimation is a key issue for validating land cover products derived from satellite images. Based on the fact that present sample size estimation methods account for the characteristics of the Earth's subsurface, this study developed a model for estimating sample size by considering the scale effect and surface heterogeneity. First, we introduced a watershed with different areas to indicate the scale effect on the sample size. Then, by employing an all-subsets regression feature selection method, three landscape indicators describing the aggregation and diversity of the land cover patches were selected (from 14 indicators) as the main factors for indicating the surface heterogeneity. Finally, we developed a multi-level linear model for sample size estimation using explanatory variables, including the estimated sample size (n) calculated from the traditional statistical model, size of the test region, and three landscape indicators. As reference data for developing this model, we employed a case study in the Jiangxi Province using a 30 meter spatial resolution global land cover product (Globeland30) from 2010 as a classified map, and national 30 meter land use/cover change (LUCC) data from 2010 in China. The results showed that the adjusted square coefficient of R2 is 0.79, indicating that the joint explanatory ability of all predictive variables in the model to the sample size is 79%. This means that the predictability of this model is at a good level. By comparing the sample size NsNS obtained by the developed multi-level linear model and n as calculated from the statistics model, we find that NsNsNS is much smaller than n, which mainly contributes to the concerns regarding surface heterogeneity in this study. The validity of the established model is tested and is proven as effective in the Anhui Province. This indicates that the estimated sample size from considering the scale effect and spatial heterogeneity in this study achieved the same accuracy as that calculated from a probability statistical model, while simultaneously saving more time, labour, and money in the accuracy assessment of a land cover dataset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA