Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 82(10): 603-615, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179882

RESUMO

Preparedness for nuclear accident responsiveness includes interventions to protect pregnancies against prolonged exposure to radioactive iodine. The aim of this study was to investigate a new design consisting of repeated administration of potassium iodide (KI, 1 mg/kg) for 8 days in late pregnancy gestational day 9-16 (GD9-GD16) in rats. The later-life effects of this early-life iodine thyroid blocking (ITB) strategy were assessed in offspring two months afterbirth. Functional behavioral tests including forced swimming test (FST) and rotarod test (RRT) in rats of both genders showed lower FST performance in KI-treated females and lower RRT performance in KI-treated male pups. This performance decline was associated with metabolic disruptions in cortex involving amino acid metabolism, tyrosine metabolism, as well as docosahexaenoic acid (DHA) lipids and signaling lipids in males and females. Beyond these behavior-associated metabolic changes, a portion of the captured metabolome (17-25%) and lipidome (3.7-7.35%) remained sensitive to in utero KI prophylactic treatment in both cortex and plasma of post-weaning rats, with some gender-related variance. Only part of these disruptions was attributed to lower levels of TSH and T4 (males only). The KI-induced metabolic shifts involved a broad spectrum of functions encompassing metabolic and cell homeostasis and cell signaling functions. Irrespective Regardless of gender and tissues, the predominant effects of KI affected neurotransmitters, amino acid metabolism, and omega-3 DHA metabolism. Taken together, data demonstrated that repeated daily KI administration at 1 mg/kg/day for 8 days during late pregnancy failed to protect the mother-fetus against nuclear accident radiation. Abbreviations: CV-ANOVA: Cross-validation analysis of variance; DHA: Docosahexaenoic acid; FST: Forced swimming test; FT3: plasma free triiodothyronine; FT4: plasma free thyroxine; GD: Gestational day; ITB: Iodine thyroid blocking; KI: potassium iodide; LC/MS: Liquid chromatography coupled with mass spectrometry; MTBE: Methyl tert-butyl ether; m/z: mass-to-charge ratio; PLS-DA: Partial least squares-discriminant analysis; PRIODAC: Repeated stable iodide prophylaxis in accidental radioactive releases; RRT: Rotarod test; TSH: Thyroid-stimulating hormone; VIP: Variable importance in projection.


Assuntos
Lipidômica/métodos , Metabolômica/métodos , Iodeto de Potássio/efeitos adversos , Iodeto de Potássio/uso terapêutico , Exposição à Radiação/prevenção & controle , Radioisótopos/toxicidade , Glândula Tireoide/efeitos dos fármacos , Animais , Feminino , Masculino , Modelos Animais , Gravidez , Liberação Nociva de Radioativos , Ratos , Ratos Wistar
2.
PDA J Pharm Sci Technol ; 63(4): 285-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20088243

RESUMO

Container-content compatibility studies are required as part of the submission of a new product market authorization file or for a change relating to the primary product-contact packaging. Many regulatory publications and guidances are available in the USA, Europe, and Japan. However these publications and guidances are not sufficiently precise enough to allow for consistent interpretation and implementation of the technical requirements. A working group has been formed by the French Society of Pharmaceutical Science and Technology (SFSTP) in order to propose guidance for container-content interaction studies that meet both European and US requirements, and allows consistent and standardized information to be presented by the industry to the regulators. When a pharmaceutical drug product remains in prolonged contact with a material, the two critical points to consider are the drug product's quality and safety. A pharmaceutical evaluation of the container-content relationship should be done based on the knowledge of the contact material (e.g., type, physicochemical properties), its manufacturing processes (e.g., the type of sterilization that could potentially alter the interactions), and the formulation components involved in contact with this material (e.g., physicochemical properties, pharmaceutical presentation, route of administration). Quality is evaluated using the stability study performed on the product. Safety is partially evaluated with the stability study and is analyzed in conjunction with toxicity testing, specifically with cytotoxicity testing. The toxicity aspect is the key point of the container-content compatibility study and of patient safety. Migration tests are conducted when an interaction is suspected, or found based on previous results, to identify the component responsible for this interaction and to help select a new material if needed. Therefore, such tests are perhaps not the best ones to use for the purpose of safety evaluation. Consequently, a decision tree based mainly on the toxicity aspect is proposed in order to support the pharmaceutical companies' container-content interaction approach and filing.


Assuntos
Embalagem de Medicamentos/normas , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Árvores de Decisões , Contaminação de Medicamentos , Indústria Farmacêutica/legislação & jurisprudência , Indústria Farmacêutica/métodos , Embalagem de Medicamentos/legislação & jurisprudência , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Europa (Continente) , Humanos , Preparações Farmacêuticas/normas , Sociedades Farmacêuticas , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA