Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 312(Pt 1): 136996, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36336021

RESUMO

The RTgill-W1 (gill), RTG-2 (gonad), and RTL-W1 (liver) cell lines derived from a freshwater fish rainbow trout (Oncorhynchus mykiss), were used to assess the toxicity of polyethylene terephthalate (PET) and two forms of polyvinyl chloride (PVC). Two size fractions (25-µm and 90-µm particles) were tested for all materials. The highest tested concentration was 1 mg/ml, corresponding to from 70 000 ± 9000 to 620 000 ± 57 000 particles/ml for 25-µm particles and from 2300 ± 100 to 11 000 ± 1000 particles/ml for 90-µm particles (depending on the material). Toxicity differences between commercial PVC dry blend powder and secondary microplastics created from a processed PVC were newly described. After a 24-h exposure, the cells were analyzed for changes in viability, 7-ethoxyresorufin-O-deethylase (EROD) activity, and reactive oxygen species (ROS) generation. In addition to the microplastic suspensions, leachates and particles remaining after leaching resuspended in fresh exposure medium were tested. The particles were subjected to leaching for 1, 8, and 15 days. The PVC dry blend (25 µm and 90 µm) and processed PVC (25 µm) increased ROS generation, to which leached chemicals appeared to be the major contributor. PVC dry blend caused substantially higher ROS induction than processed PVC, showing that the former is not suitable for toxicity testing, as it can produce different results from those of secondary PVC. The 90-µm PVC dry blend increased ROS generation only after prolonged leaching. PET did not induce any changes in ROS generation, and none of the tested polymers had any effect on viability or EROD activity. The importance of choosing realistic extraction procedures for microplastic toxicity experiments was emphasized. Conducting long-term experiments is crucial to detect possible environmentally relevant effects. In conclusion, the tested materials showed no acute toxicity to the cell lines.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Oncorhynchus mykiss/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Cloreto de Polivinila/toxicidade , Cloreto de Polivinila/metabolismo , Polietilenotereftalatos/toxicidade , Polietilenotereftalatos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/análise , Linhagem Celular
2.
Nanomaterials (Basel) ; 11(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477826

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are manufactured worldwide. Once they arrive in the soil environment, they can endanger living organisms. Hence, monitoring and assessing the effects of these nanoparticles is required. We focus on the Eisenia andrei earthworm immune cells exposed to sublethal concentrations of TiO2 NPs (1, 10, and 100 µg/mL) for 2, 6, and 24 h. TiO2 NPs at all concentrations did not affect cell viability. Further, TiO2 NPs did not cause changes in reactive oxygen species (ROS) production, malondialdehyde (MDA) production, and phagocytic activity. Similarly, they did not elicit DNA damage. Overall, we did not detect any toxic effects of TiO2 NPs at the cellular level. At the gene expression level, slight changes were detected. Metallothionein, fetidin/lysenin, lumbricin and MEK kinase I were upregulated in coelomocytes after exposure to 10 µg/mL TiO2 NPs for 6 h. Antioxidant enzyme expression was similar in exposed and control cells. TiO2 NPs were detected on coelomocyte membranes. However, our results do not show any strong effects of these nanoparticles on coelomocytes at both the cellular and molecular levels.

3.
Chemosphere ; 217: 534-541, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30445398

RESUMO

Personal care product consumption has increased in the last decades. A typical representative ingredient, i.e., triclosan, was identified in the scientific literature as an endocrine disruptor, and its use is restricted in several applications. Oral hygiene formulations contain various compounds, including synthetic phenol derivatives, quaternary ammonium compounds (QACs), various amides and amines, or natural essential oils containing terpenes. The aim of this paper was to explore possible endocrine-disrupting effects of these most-used compounds. For this purpose, two different assays based on recombinant yeast (BMAEREluc/ERα; BMAEREluc/AR) and human cell lines (T47D; AIZ-AR) were employed to investigate the agonistic and antagonistic properties of these compounds on human estrogen and androgen receptors. The results showed that none of the compounds were indicated as agonists of the steroid receptors. However, octenidine (OCT, QAC-like) and hexadecylpyridinium (HDP, QAC) were able to completely inhibit both androgenic (IC50 OCT = 0.84 µM; IC50 HDP = 1.66 µM) and estrogenic (IC50 OCT = 0.50 µM; IC50 HDP = 1.64 µM) signaling pathways in a dose-dependent manner. Additionally, chlorhexidine was found to inhibit the 17ß-estradiol response, with a similar IC50 (2.9 µM). In contrast, the natural terpenes thymol and menthol were found to be competitive antagonists of the receptors; however, their IC50 values were higher (by orders of magnitude). We tried to estimate the risk associated with the presence of these compounds in environmental matrices by calculating hazard quotients (HQs), and the calculated HQs were found to be close to or greater than 1 only when predicted environmental concentrations were used for surface waters.


Assuntos
Antibacterianos/uso terapêutico , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Antibacterianos/farmacologia , Humanos
4.
Sci Total Environ ; 607-608: 1451-1465, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28763941

RESUMO

The present study describes a pilot remediation test of a co-mingled plume containing BTEX, chlorinated pollutants and pharmaceuticals. Remediation was attempted using a combination of various approaches, including a pump and treat system applying an advanced oxidation process and targeted direct push injections of calcium peroxide. The remediation process was monitored intensively and extensively throughout the pilot test using various conventional and passive sampling methods, including next-generation amplicon sequencing. The results showed that the injection of oxygen-saturated treated water with residual hydrogen peroxide and elevated temperature enhanced the in situ removal of monoaromatics and chlorinated pollutants. In particular, in combination with the injection of calcium peroxide, the conditions facilitated the in situ bacterial biodegradation of the pollutants. The mean groundwater concentration of benzene decreased from 1349µg·L-1 prior to the test to 3µg·L-1 within 3months after the calcium peroxide injections; additionally, monochlorobenzene decreased from 1545µg·L-1 to 36µg·L-1, and toluene decreased from 143µg·L-1 to 2µg·L-1. Furthermore, significant degradation of the contaminants bound to the soil matrix in less permeable zones was observed. Based on a developed 3D model, 90% of toluene and 88% of chlorobenzene bound to the soil were removed during the pilot test, and benzene was removed almost completely. On the other hand, the psychopharmaceuticals were effectively removed by the employed advanced oxidation process only from the treated water, and their concentration in groundwater remained stagnant due to inflow from the surroundings and their absence of in situ degradation. The employment of passive sampling techniques, including passive diffusion bags (PDB) for volatile organic pollutants and their respective transformation products, polar organic compound integrative samplers (POCIS) for the pharmaceuticals and in situ soil microcosms for microbial community analysis, was proven to be suitable for monitoring remediation in saturated zones.

5.
Sci Total Environ ; 566-567: 250-259, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27220102

RESUMO

The removal of aged hydrophobic contaminants from fine-textured soils is a challenging issue in remediation. The objective of this study was to compare the efficacy of augmentation treatments to that of biostimulation in terms of total aliphatic hydrocarbon (TAH) and toxicity removal from a historically contaminated clay soil and to assess their impact on the resident microbial community. To this aim, Pleurotus ostreatus, Botryosphaeria rhodina and a combination of both were used as the inoculants while the addition of a sterilized lignocellulose mixture to soil (1:5, w/w) was used as a biostimulation approach. As opposed to the non-amended control soil, where no changes in TAH concentration and residual toxicity were observed after 60days, the activation of specialized bacteria was found in the biostimulated microcosms resulting in significant TAH removal (79.8%). The bacterial community structure in B. rhodina-augmented microcosms did not differ from the biostimulated microcosms due to the inability of the fungus to be retained within the resident microbiota. Best TAH removals were observed in microcosms inoculated with P. ostreatus alone (Po) and in binary consortium with B. rhodina (BC) (86.8 and 88.2%, respectively). In these microcosms, contaminant degradation exceeded their bioavailability thresholds determined by sequential supercritical CO2 extraction. Illumina metabarcoding of 16S rRNA gene showed that the augmentation with Po and BC led to lower relative abundances of Gram(+) taxa, Actinobacteria in particular, than those in biostimulated microcosms. Best detoxification, with respect to the non-amended incubation control, was found in Po microcosms where a drop in collembola mortality (from 90 to 22%) occurred. At the end of incubation, in both Po and BC, the relative abundances of P. ostreatus sequences were higher than 60% thus showing the suitability of this fungus in bioaugmentation-based remediation applications.


Assuntos
Ascomicetos/metabolismo , Hidrocarbonetos/metabolismo , Pleurotus/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Sequenciamento de Nucleotídeos em Larga Escala , Itália
6.
Sci Total Environ ; 505: 545-54, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25461057

RESUMO

The present work was aimed at isolating and identifying the main members of the mycobiota of a clay soil historically contaminated by mid- and long-chain aliphatic hydrocarbons (AH) and to subsequently assess their hydrocarbon-degrading ability. All the isolates were Ascomycetes and, among them, the most interesting was Pseudoallescheria sp. 18A, which displayed both the ability to use AH as the sole carbon source and to profusely colonize a wheat straw:poplar wood chip (70:30, w/w) lignocellulosic mixture (LM) selected as the amendment for subsequent soil remediation microcosms. After a 60 d mycoaugmentation with Pseudoallescheria sp. of the aforementioned soil, mixed with the sterile LM (5:1 mass ratio), a 79.7% AH reduction and a significant detoxification, inferred by a drop in mortality of Folsomia candida from 90 to 24%, were observed. However, similar degradation and detoxification outcomes were found in the non-inoculated incubation control soil that had been amended with the sterile LM. This was due to the biostimulation exerted by the amendment on the resident microbiota, fungi in particular, the activity and density of which were low, instead, in the non-amended incubation control soil.


Assuntos
Fungos/metabolismo , Hidrocarbonetos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/análise , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA