Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 2): 156072, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35598665

RESUMO

Biochar is a widely used antecedent for improving bio­hydrogen production. However, little is known about the impact of biochar-derived dissolved organic matter (DOM) on the performance of fermentative bio-H2 production. Herein, we evaluated the impact of biochar-derived DOM on the fermentation performance of hydrogen-producing microflora. The pyrolysis temperature of biochar affected the DOM composition, with lower pyrolysis temperatures showing more serious inhibition on H2 accumulation. When biochar was pyrolyzed at 500 °C, DOM prolonged the fermentation period and decreased H2 production from 1330.41 mL L-1 to 1177.05 mL L-1 compared to the control group. The xylose utilization in mixed substrate decreased from 29.72% to 26.41%, which is not favorable for practical applications where lignocellulosic biomass is used as a substrate. Otherwise, DOM caused a 6% reduction in microbial biomass accumulation and less soluble metabolites formation. The potential mechanism of DOM inhibiting bio­hydrogen production was verified by identifying an increase in reactive oxygen species (ROS) level (178.2%) and the microbial community shifted to containing fewer hydrogen-producing strains. The finding prompts a more precise design of biochar applications in fermentation systems to alleviate the potential hazards and maximum the fermentation performance, not limited to fermentative hydrogen production system.


Assuntos
Matéria Orgânica Dissolvida , Carvão Vegetal/química , Fermentação , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA