Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Abdom Radiol (NY) ; 49(5): 1699-1715, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578323

RESUMO

Cholangiocarcinoma (CCA), a highly aggressive primary liver cancer arising from the bile duct epithelium, represents a substantial proportion of hepatobiliary malignancies, posing formidable challenges in diagnosis and treatment. Notably, the global incidence of intrahepatic CCA has seen a rise, necessitating a critical examination of diagnostic and management strategies, especially due to presence of close imaging mimics such as hepatocellular carcinoma (HCC) and combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA). Hence, it is imperative to understand the role of various imaging modalities such as ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI), elucidating their strengths, and limitations in diagnostic precision and staging accuracy. Beyond conventional approaches, there is emerging significance of functional imaging tools including positron emission tomography (PET)-CT and diffusion-weighted (DW)-MRI, providing pivotal insights into diagnosis, therapeutic assessment, and prognostic evaluation. This comprehensive review explores the risk factors, classification, clinical features, and role of imaging in the holistic spectrum of diagnosis, staging, management, and restaging for CCA, hence serving as a valuable resource for radiologists evaluating CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/diagnóstico por imagem , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Estadiamento de Neoplasias , Diagnóstico Diferencial
2.
Eur Radiol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189979

RESUMO

OBJECTIVES: To investigate intra-patient variability of iodine concentration (IC) between three different dual-energy CT (DECT) platforms and to test different normalization approaches. METHODS: Forty-four patients who underwent portal venous phase abdominal DECT on a dual-source (dsDECT), a rapid kVp switching (rsDECT), and a dual-layer detector platform (dlDECT) during cancer follow-up were retrospectively included. IC in the liver, pancreas, and kidneys and different normalized ICs (NICPV:portal vein; NICAA:abdominal aorta; NICALL:overall iodine load) were compared between the three DECT scanners for each patient. A longitudinal mixed effects analysis was conducted to elucidate the effect of the scanner type, scan order, inter-scan time, and contrast media amount on normalized iodine concentration. RESULTS: Variability of IC was highest in the liver (dsDECT vs. dlDECT 28.96 (14.28-46.87) %, dsDECT vs. rsDECT 29.08 (16.59-62.55) %, rsDECT vs. dlDECT 22.85 (7.52-33.49) %), and lowest in the kidneys (dsDECT vs. dlDECT 15.76 (7.03-26.1) %, dsDECT vs. rsDECT 15.67 (8.86-25.56) %, rsDECT vs. dlDECT 10.92 (4.92-22.79) %). NICALL yielded the best reduction of IC variability throughout all tissues and inter-scanner comparisons, yet did not reduce the variability between dsDECT vs. dlDECT and rsDECT, respectively, in the liver. The scanner type remained a significant determinant for NICALL in the pancreas and the liver (F-values, 12.26 and 23.78; both, p < 0.0001). CONCLUSIONS: We found tissue-specific intra-patient variability of IC across different DECT scanner types. Normalization mitigated variability by reducing physiological fluctuations in iodine distribution. After normalization, the scanner type still had a significant effect on iodine variability in the pancreas and liver. CLINICAL RELEVANCE STATEMENT: Differences in iodine quantification between dual-energy CT scanners can partly be mitigated by normalization, yet remain relevant for specific tissues and inter-scanner comparisons, which should be taken into account at clinical routine imaging. KEY POINTS: • Iodine concentration showed the least variability between scanner types in the kidneys (range 10.92-15.76%) and highest variability in the liver (range 22.85-29.08%). • Normalizing tissue-specific iodine concentrations against the overall iodine load yielded the greatest reduction of variability between scanner types for 2/3 inter-scanner comparisons in the liver and for all (3/3) inter-scanner comparisons in the kidneys and pancreas, respectively. • However, even after normalization, the dual-energy CT scanner type was found to be the factor significantly influencing variability of iodine concentration in the liver and pancreas.

3.
Radiol Clin North Am ; 61(6): 933-944, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758361

RESUMO

Computed tomography (CT) has seen remarkable developments in the past several decades, radically transforming the role of imaging in day-to-day clinical practice. Dual-energy CT (DECT), an exciting innovation introduced in the early part of this century, has widened the scope of CT, opening new opportunities due to its ability to provide superior tissue characterization. The introduction of photon-counting CT (PCCT) heralds a paradigm shift in CT scanner technology representing another significant milestone in CT innovation. PCCT offers several advantages over DECT, such as improved spectral resolution, enhanced tissue characterization, reduced image artifacts, and improved image quality.


Assuntos
Invenções , Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA