Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Sens ; 6(1): 43-53, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33325684

RESUMO

Measurement of intramuscular oxygen could play a key role in the early diagnosis of acute compartment syndrome, a common condition occurring after severe trauma leading to ischemia and long-term consequences including rhabdomyolysis, limb loss, and death. However, to date, there is no existing oxygen sensor approved for such a purpose. To address the need to improve the assessment of compartment syndrome, a portable fiber-optic device for intramuscular oxygen measurements was developed. The device is based on phosphorescence quenching, where the tip of an optical fiber was coated with a poly(propyl methacrylate) (PPMA) matrix containing a brightly emitting Pt(II)-core porphyrin. The optoelectronic circuit is highly portable and is based on a microspectrometer and a microcontroller readout with a smartphone. Results from an in vivo tourniquet porcine model show that the sensor is sensitive across the physiological oxygen partial pressure range of 0-80 mmHg and exhibits an appropriate and reproducible response to changes in intramuscular oxygen. A commercial laboratory oxygen sensor based on a lifetime measurement did not respond as expected.


Assuntos
Síndromes Compartimentais , Oxigênio , Animais , Hipóxia , Fibras Ópticas , Suínos
2.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355131

RESUMO

Flaps are common in plastic surgery to reconstruct large tissue defects in cases such as trauma or cancer. However, most tissue oximeters used for monitoring ischemia in postoperative flaps are bulky, wired devices, which hinder direct flap observation. Here, we present the results of a clinical trial using a previously untried paintable transparent phosphorescent bandage to assess the tissue's partial pressure of oxygen (pO2). Statistical analysis revealed a strong relationship (P < 0.0001) between the rates of change of tissue oxygenation measured by the bandage and blood oxygen saturation (%stO2) readings from a standard-of-care ViOptix near-infrared spectroscopy oximeter. In addition, the oxygen-sensing bandage showed no adverse effects, proved easy handling, and yielded bright images across all skin tones with a digital single-lens reflex (DSLR) camera. This demonstrates the feasibility of using phosphorescent materials to monitor flaps postoperatively and lays the groundwork for future exploration in other tissue oxygen sensing applications.


Assuntos
Mamoplastia , Oxigênio , Bandagens , Mamoplastia/métodos , Oximetria , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA