Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Regul Toxicol Pharmacol ; 131: 105160, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35311659

RESUMO

Rodent cancer bioassays have been long-required studies for regulatory assessment of human cancer hazard and risk. These studies use hundreds of animals, are resource intensive, and certain aspects of these studies have limited human relevance. The past 10 years have seen an exponential growth of new technologies with the potential to effectively evaluate human cancer hazard and risk while reducing, refining, or replacing animal use. To streamline and facilitate uptake of new technologies, a workgroup comprised of scientists from government, academia, non-governmental organizations, and industry stakeholders developed a framework for waiver rationales of rodent cancer bioassays for consideration in agrochemical safety assessment. The workgroup used an iterative approach, incorporating regulatory agency feedback, and identifying critical information to be considered in a risk assessment-based weight of evidence determination of the need for rodent cancer bioassays. The reporting framework described herein was developed to support a chronic toxicity and carcinogenicity study waiver rationale, which includes information on use pattern(s), exposure scenario(s), pesticidal mode-of-action, physicochemical properties, metabolism, toxicokinetics, toxicological data including mechanistic data, and chemical read-across from similar registered pesticides. The framework could also be applied to endpoints other than chronic toxicity and carcinogenicity, and for chemicals other than agrochemicals.


Assuntos
Neoplasias , Praguicidas , Agroquímicos/toxicidade , Animais , Bioensaio , Testes de Carcinogenicidade , Praguicidas/toxicidade , Medição de Risco , Roedores
2.
Crit Rev Toxicol ; 51(8): 653-694, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35239444

RESUMO

The Toxicology Forum convened an international state-of-the-science workshop Assessing Chemical Carcinogenicity: Hazard Identification, Classification, and Risk Assessment in December 2020. Challenges related to assessing chemical carcinogenicity were organized under the topics of (1) problem formulation; (2) modes-of-action; (3) dose-response assessment; and (4) the use of new approach methodologies (NAMs). Key topics included the mechanisms of genotoxic and non-genotoxic carcinogenicity and how these in conjunction with consideration of exposure conditions might inform dose-response assessments and an overall risk assessment; approaches to evaluate the human relevance of modes-of-action observed in rodent studies; and the characterization of uncertainties. While the scientific limitations of the traditional rodent chronic bioassay were widely acknowledged, knowledge gaps that need to be overcome to facilitate the further development and uptake of NAMs were also identified. Since one single NAM is unlikely to replace the bioassay, activities to combine NAMs into integrated approaches for testing and assessment, or preferably into defined approaches for testing and assessment that include data interpretation procedures, were identified as urgent research needs. In addition, adverse outcome pathway networks can provide a framework for organizing the available evidence/data for assessing chemical carcinogenicity. Since a formally accepted decision tree to guide use of the best and most current science to advance carcinogenicity risk assessment is currently unavailable, a Decision Matrix for carcinogenicity assessment could be useful. The workshop organizers developed and presented a decision matrix to be considered within a carcinogenicity hazard and risk assessment that is offered in tabular form.


Assuntos
Carcinogênese , Carcinógenos , Bioensaio , Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Humanos , Medição de Risco/métodos
3.
Regul Toxicol Pharmacol ; 112: 104592, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32017962

RESUMO

The need to develop new tools and increase capacity to test pharmaceuticals and other chemicals for potential adverse impacts on human health and the environment is an active area of development. Much of this activity was sparked by two reports from the US National Research Council (NRC) of the National Academies of Sciences, Toxicity Testing in the Twenty-first Century: A Vision and a Strategy (2007) and Science and Decisions: Advancing Risk Assessment (2009), both of which advocated for "science-informed decision-making" in the field of human health risk assessment. The response to these challenges for a "paradigm shift" toward using new approach methodologies (NAMS) for safety assessment has resulted in an explosion of initiatives by numerous organizations, but, for the most part, these have been carried out independently and are not coordinated in any meaningful way. To help remedy this situation, a framework that presents a consistent set of criteria, universal across initiatives, to evaluate a NAM's fit-for-purpose was developed by a multi-stakeholder group of industry, academic, and regulatory experts. The goal of this framework is to support greater consistency across existing and future initiatives by providing a structure to collect relevant information to build confidence that will accelerate, facilitate and encourage development of new NAMs that can ultimately be used within the appropriate regulatory contexts. In addition, this framework provides a systematic approach to evaluate the currently-available NAMs and determine their suitability for potential regulatory application. This 3-step evaluation framework along with the demonstrated application with case studies, will help build confidence in the scientific understanding of these methods and their value for chemical assessment and regulatory decision-making.


Assuntos
Tomada de Decisões , Gestão da Segurança , Humanos , Medição de Risco , Testes de Toxicidade
4.
Toxicol In Vitro ; 52: 131-145, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29908304

RESUMO

New approaches are needed to assess the effects of inhaled substances on human health. These approaches will be based on mechanisms of toxicity, an understanding of dosimetry, and the use of in silico modeling and in vitro test methods. In order to accelerate wider implementation of such approaches, development of adverse outcome pathways (AOPs) can help identify and address gaps in our understanding of relevant parameters for model input and mechanisms, and optimize non-animal approaches that can be used to investigate key events of toxicity. This paper describes the AOPs and the toolbox of in vitro and in silico models that can be used to assess the key events leading to toxicity following inhalation exposure. Because the optimal testing strategy will vary depending on the substance of interest, here we present a decision tree approach to identify an appropriate non-animal integrated testing strategy that incorporates consideration of a substance's physicochemical properties, relevant mechanisms of toxicity, and available in silico models and in vitro test methods. This decision tree can facilitate standardization of the testing approaches. Case study examples are presented to provide a basis for proof-of-concept testing to illustrate the utility of non-animal approaches to inform hazard identification and risk assessment of humans exposed to inhaled substances.


Assuntos
Alternativas aos Testes com Animais , Testes de Toxicidade Aguda , Administração por Inalação , Árvores de Decisões , Humanos
5.
Drug Discov Today ; 23(11): 1824-1832, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29870792

RESUMO

Failures in the current paradigm for drug development have resulted in soaring research and development costs and reduced numbers of new drug approvals. Over 90% of new drug programs fail, the majority terminated at the level of Phase 2/3 clinical trials, largely because of efficacy failures or unexplained toxicity. A recent workshop brought together members from research institutions, regulatory agencies, industry, academia, and nongovernmental organizations to discuss how existing programs could be better applied to understanding human biology and improving drug discovery. Recommendations include increased emphasis on human relevance, better access and curation of data, and improved interdisciplinary and international collaboration.


Assuntos
Aprovação de Drogas/métodos , Descoberta de Drogas/economia , Descoberta de Drogas/métodos , Indústria Farmacêutica/métodos , Diretrizes para o Planejamento em Saúde , Descoberta de Drogas/estatística & dados numéricos , Indústria Farmacêutica/estatística & dados numéricos , Humanos
6.
Crit Rev Toxicol ; 48(5): 359-374, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29474122

RESUMO

Skin sensitization is a toxicity endpoint of widespread concern, for which the mechanistic understanding and concurrent necessity for non-animal testing approaches have evolved to a critical juncture, with many available options for predicting sensitization without using animals. Cosmetics Europe and the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods collaborated to analyze the performance of multiple non-animal data integration approaches for the skin sensitization safety assessment of cosmetics ingredients. The Cosmetics Europe Skin Tolerance Task Force (STTF) collected and generated data on 128 substances in multiple in vitro and in chemico skin sensitization assays selected based on a systematic assessment by the STTF. These assays, together with certain in silico predictions, are key components of various non-animal testing strategies that have been submitted to the Organization for Economic Cooperation and Development as case studies for skin sensitization. Curated murine local lymph node assay (LLNA) and human skin sensitization data were used to evaluate the performance of six defined approaches, comprising eight non-animal testing strategies, for both hazard and potency characterization. Defined approaches examined included consensus methods, artificial neural networks, support vector machine models, Bayesian networks, and decision trees, most of which were reproduced using open source software tools. Multiple non-animal testing strategies incorporating in vitro, in chemico, and in silico inputs demonstrated equivalent or superior performance to the LLNA when compared to both animal and human data for skin sensitization.


Assuntos
Alternativas aos Testes com Animais/métodos , Biologia Computacional/métodos , Simulação por Computador , Cosméticos/efeitos adversos , Dermatite Alérgica de Contato/imunologia , Pele/imunologia , Animais , Cosméticos/farmacologia , Dermatite Alérgica de Contato/etiologia , Humanos , Camundongos , Pele/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA