Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(12): 2744-2762, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33759299

RESUMO

Biological sources of carbon sequestration such as revegetation have been highlighted as important avenues to combat climate change and meet global targets by the global community including the Paris Climate Agreement. However, current and projected carbon prices present a considerable barrier to broad-scale adoption of tree planting as a key mitigation strategy. One avenue to provide additional economic and environmental incentives to encourage wider adoption of revegetation is the bundling or stacking of additional co-beneficial ecosystem services that can be realized from tree planting. Using the World's largest land-based carbon credit trading scheme, the Australian Emissions Reduction Scheme (ERF), we examine the potential for three pairs of ecosystem services, where the carbon sequestration value of land use change is paired with an additional co-benefit with strong prospects for local tangible benefits to land owners/providers. Two cases consider agricultural provisioning values that can be realized by the landowners in higher returns: increased pollination services and reduced lamb mortality. The third case examined payments for tree plantings along riparian buffers, with payments to farmers by a water utility who realizes the benefit from reduced treatment cost due to water quality improvements. Economic incentives from these co-benefit case studies were found to be mixed, with avoided treatment costs from water quality paired with carbon payments the most promising, while pollination and reduced lamb mortality paired with carbon payments were unable to bridge the economic gap except under the most optimistic assumptions. We conclude that the economics case for significant land use change are likely to be geographically dispersed and only viable in relatively niche landscape positions in high establishment, high opportunity cost areas even when carbon payments are augmented with the value of co-benefits classified as providing direct and local benefits.


Assuntos
Carbono , Ecossistema , Animais , Austrália , Carbono/análise , Sequestro de Carbono , Conservação dos Recursos Naturais , Ovinos
2.
Front Microbiol ; 11: 597944, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488543

RESUMO

A wines' terroir, represented as wine traits with regional distinctiveness, is a reflection of both the biophysical and human-driven conditions in which the grapes were grown and wine made. Soil is an important factor contributing to the uniqueness of a wine produced by vines grown in specific conditions. Here, we evaluated the impact of environmental variables on the soil bacteria of 22 Barossa Valley vineyard sites based on the 16S rRNA gene hypervariable region 4. In this study, we report that both dispersal isolation by geographic distance and environmental heterogeneity (soil plant-available P content, elevation, rainfall, temperature, spacing between row and spacing between vine) contribute to microbial community dissimilarity between vineyards. Vineyards located in cooler and wetter regions showed lower beta diversity and a higher ratio of dominant taxa. Differences in soil bacterial community composition were significantly associated with differences in fruit and wine composition. Our results suggest that environmental factors affecting wine terroir, may be mediated by changes in microbial structure, thus providing a basic understanding of how growing conditions affect interactions between plants and their soil bacteria.

3.
Sci Rep ; 9(1): 14880, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619728

RESUMO

The positive effects of arbuscular mycorrhizal fungi (AMF) have been demonstrated for plant biomass, and zinc (Zn) and phosphorus (P) uptake, under soil nutrient deficiency. Additionally, a number of Zn and P transporter genes are affected by mycorrhizal colonisation or implicated in the mycorrhizal pathway of uptake. However, a comprehensive study of plant physiology and gene expression simultaneously, remains to be undertaken. Medicago truncatula was grown at different soil P and Zn availabilities, with or without inoculation of Rhizophagus irregularis. Measures of biomass, shoot elemental concentrations, mycorrhizal colonisation, and expression of Zn transporter (ZIP) and phosphate transporter (PT) genes in the roots, were taken. Mycorrhizal plants had a greater tolerance of both P and Zn soil deficiency; there was also evidence of AMF protecting plants against excessive Zn accumulation at high soil Zn. The expression of all PT genes was interactive with both P availability and mycorrhizal colonisation. MtZIP5 expression was induced both by AMF and soil Zn deficiency, while MtZIP2 was down-regulated in mycorrhizal plants, and up-regulated with increasing soil Zn concentration. These findings provide the first comprehensive physiological and molecular picture of plant-mycorrhizal fungal symbiosis with regard to soil P and Zn availability. Mycorrhizal fungi conferred tolerance to soil Zn and P deficiency and this could be linked to the induction of the ZIP transporter gene MtZIP5, and the PT gene MtPT4.


Assuntos
Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago truncatula/efeitos dos fármacos , Fósforo/farmacologia , Proteínas de Plantas/genética , Rhizophoraceae/fisiologia , Zinco/farmacologia , Biomassa , Proteínas de Transporte de Cátions/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Micorrizas/fisiologia , Fósforo/deficiência , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Solo/química , Simbiose/fisiologia , Zinco/deficiência
4.
Ecol Lett ; 22(11): 1757-1766, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31370098

RESUMO

Highly variable phenotypic responses in mycorrhizal plants challenge our functional understanding of plant-fungal mutualisms. Using non-invasive high-throughput phenotyping, we observed that arbuscular mycorrhizal (AM) fungi relieved phosphorus (P) limitation and enhanced growth of Brachypodium distachyon under P-limited conditions, while photosynthetic limitation under low nitrogen (N) was exacerbated by the fungus. However, these responses were strongly dependent on host genotype: only the faster growing genotype (Bd3-1) utilised P transferred from the fungus to achieve improved growth under P-limited conditions. Under low N, the slower growing genotype (Bd21) had a carbon and N surplus that was linked to a less negative growth response compared with the faster growing genotype. These responses were linked to the regulation of N : P stoichiometry, couples resource allocation to growth or luxury consumption in diverse plant lineages. Our results attest strongly to a mechanism in plants by which plant genotype-specific resource economics drive phenotypic outcomes during AM symbioses.


Assuntos
Micorrizas , Nitrogênio , Fósforo , Alocação de Recursos , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA