Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Appl Neuropsychol Adult ; : 1-17, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827177

RESUMO

Nowadays, there is a broad range of methods for detecting and evaluating executive dysfunction ranging from clinical interview to neuropsychological evaluation. Nevertheless, a critical issue of these assessments is the lack of correspondence of the neuropsychological test's results with real-world functioning. This paper proposes serious games as a new framework to improve the neuropsychological assessment of real-world functioning. We briefly discuss the contribution and limitations of current methods of evaluation of executive dysfunction (paper-and-pencil tests, naturalistic observation methods, and Information and Communications Technologies) to inform on daily life functioning. Then, we analyze what are the limitations of these methods to predict real-world performance: (1) A lack of appropriate instruments to investigate the complexity of real-world functioning, (2) the vast majority of neuropsychological tests assess well-structured tasks, and (3) measurement of behaviors are based on simplistic data collection and statistical analysis. This work shows how serious games offer an opportunity to develop more efficient tools to detect executive dysfunction in everyday life contexts. Serious games provide meaningful narrative stories and virtual or real environments that immerse the user in natural and social environments with social interactions. In those highly interactive game environments, the player needs to adapt his/her behavioral performance to novel and ill-structured tasks which are suited for collecting user interaction evidence. Serious games offer a novel opportunity to develop better tools to improve diagnosis of the executive dysfunction in everyday life contexts. However, more research is still needed to implement serious games in everyday clinical practice.

3.
Stud Health Technol Inform ; 228: 332-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27577398

RESUMO

PURPOSE: An important part of the electronic information available in Hospital Information System (HIS) has the potential to be automatically exported to Electronic Data Capture (EDC) platforms for improving clinical research. This automation has the advantage of reducing manual data transcription, a time consuming and prone to errors process. However, quantitative evaluations of the process of exporting data from a HIS to an EDC system have not been reported extensively, in particular comparing with manual transcription. In this work an assessment to study the quality of an automatic export process, focused in laboratory data from a HIS is presented. METHODS: Quality of the laboratory data was assessed in two types of processes: (1) a manual process of data transcription, and (2) an automatic process of data transference. The automatic transference was implemented as an Extract, Transform and Load (ETL) process. Then, a comparison was carried out between manual and automatic data collection methods. The criteria to measure data quality were correctness and completeness. RESULTS: The manual process had a general error rate of 2.6% to 7.1%, obtaining the lowest error rate if data fields with a not clear definition were removed from the analysis (p < 10E-3). In the case of automatic process, the general error rate was 1.9% to 12.1%, where lowest error rate is obtained when excluding information missing in the HIS but transcribed to the EDC from other physical sources. CONCLUSION: The automatic ETL process can be used to collect laboratory data for clinical research if data in the HIS as well as physical documentation not included in HIS, are identified previously and follows a standardized data collection protocol.


Assuntos
Automação , Pesquisa Biomédica , Sistemas de Informação Hospitalar , Disseminação de Informação , Mieloma Múltiplo , Alemanha , Humanos , Disseminação de Informação/métodos , Armazenamento e Recuperação da Informação/normas , Avaliação de Programas e Projetos de Saúde , Estudos Retrospectivos
4.
Artigo em Inglês | MEDLINE | ID: mdl-27403319

RESUMO

BACKGROUND: The fascia provides and transmits forces for connective tissues, thereby regulating human posture and movement. One way to assess the myofascial interaction is a fascia ultrasound recording. Ultrasound can follow fascial displacement either manually or automatically through two-dimensional (2D) method. One possible method is the iterated Lucas-Kanade Pyramid (LKP) algorithm, which is based on automatic pixel tracking during passive movements in 2D fascial displacement assessments. Until now, the accumulated error over time has not been considered, even though it could be crucial for detecting fascial displacement in low amplitude movements. The aim of this study was to assess displacement of the medial gastrocnemius fascia during cervical spine flexion in a kyphotic posture with the knees extended and ankles at 90°. METHODS: The ultrasound transducer was placed on the extreme dominant belly of the medial gastrocnemius. Displacement was calculated from nine automatically selected tracking points. To determine cervical flexion, an established 2D marker protocol was implemented. Offline pressure sensors were used to synchronize the 2D kinematic data from cervical flexion and deep fascia displacement of the medial gastrocnemius. RESULTS: Fifteen participants performed the cervical flexion task. The basal tracking error was 0.0211 mm. In 66 % of the subjects, a proximal fascial tissue displacement of the fascia above the basal error (0.076 mm ± 0.006 mm) was measured. Fascia displacement onset during cervical spine flexion was detected over 70 % of the cycle; however, only when detected for more than 80 % of the cycle was displacement considered statistically significant as compared to the first 10 % of the cycle (ANOVA, p < 0.05). CONCLUSION: By using an automated tracking method, the present analyses suggest statistically significant displacement of deep fascia. Further studies are needed to corroborate and fully understand the mechanisms associated with these results.

5.
Acta Trop ; 143: 47-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25553972

RESUMO

Chagas disease is an endemic, neglected tropical disease in Latin America that is caused by the protozoan parasite Trypanosoma cruzi. In vitro models constitute the first experimental approach to study the physiopathology of the disease and to assay potential new trypanocidal agents. Here, we report and describe clearly the use of commercial software (MATLAB(®)) to quantify T. cruzi amastigotes and infected mammalian cells (BeWo) and compared this analysis with the manual one. There was no statistically significant difference between the manual and the automatic quantification of the parasite; the two methods showed a correlation analysis r(2) value of 0.9159. The most significant advantage of the automatic quantification was the efficiency of the analysis. The drawback of this automated cell counting method was that some parasites were assigned to the wrong BeWo cell, however this data did not exceed 5% when adequate experimental conditions were chosen. We conclude that this quantification method constitutes an excellent tool for evaluating the parasite load in cells and therefore constitutes an easy and reliable ways to study parasite infectivity.


Assuntos
Doença de Chagas/parasitologia , Carga Parasitária/métodos , Trypanosoma cruzi/patogenicidade , Animais , Contagem de Células/métodos , Técnicas de Cultura de Células , Chlorocebus aethiops , Técnicas In Vitro , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA