RESUMO
The service tree (Sorbus domestica) is a wild fruit tree with immense medicinal and industrial value. This study aimed at determining the four major groups of antioxidants (flavonoids, phenolic acids and aldehydes, catechin and procyanidin) in rootstocks of Crataegus laevigata (genotypes O-LE-14 and O-LE-21), Aronia melanocarpa (genotypes O-LE-14 and O-LE-21), Chaenomeles japonica (genotype O-LE-9) and Cydonia oblonga (BA 29) (genotypes O-LE-14 and O-LE-21). Hyperoside (Quercetin 3-D-galactoside) was the most abundant flavonoid compound, since its average content in the rootstocks of Crataegus laevigata (O-LE-21) was 180.68 ± 0.04 µg·g-1. Dihydrokaempherol was the least frequently found flavonoid compound, with an average concentration of 0.43 ± 0.01 µg·g-1 in all the rootstocks of plants considered in this study. Among the phenolic compounds, the most represented one was protocatechuic acid, with 955.92 ± 10.25 µg·g-1 in the rootstocks of Aronia melanocarpa (O-LE-14). On the other hand, the least represented p-Coumaric acid exhibited the average concentration of 0.34 ± 0.01 µg·g-1 in the plant rootstocks. Epicatechin was the most abundant catechin compound, with a content of 3196.37 ± 50.10 µg·g-1 in the rootstocks of Aronia melanocarpa (O-LE-14). The lowest represented catechin compound was epigallocatechin, with the average concentration of 0.95 ± 0.08 µg·g-1 in the screened plant rootstocks. From the procyanidin compounds, the most abundant one was procyanidin b2 in the rootstocks of Crataegus laevigata (O-LE-14), with a concentration of 5550.40 ± 99.56 µg·g-1. On the contrary, procyanidin a2, with an average concentration of 40.35 ± 1.61 µg·g-1, represented the least frequent procyanidin compound in all the plant rootstocks screened herein.
RESUMO
Asoxime (HI-6) is a well known oxime reactivator used for counteracting intoxication by nerve agents. It is able to reactivate acetylcholinesterase (AChE) inhibited even by sarin or soman. The present experiment was aimed to determine markers of oxidative stress represented by thiobarbituric acid reactive substances and antioxidants represented by ferric reducing antioxidant power, reduced and oxidized glutathione in a Beagle dog model. Two groups of dogs were intramuscularly exposed to single (11.4 mg/kg.b.wt.) or tenfold (114 mg/kg.b.wt.) human therapeutically doses of HI-6. HI-6 affinity for AChE in vitro was evaluated in a separate experiment. Complete serum biochemistry and pharmacokinetics were also performed with significant alteration in blood urea nitrogen, creatine phosphokinase, glucose and triglycerides. Blood samples were collected before HI-6 application and after 30, 60, and 120 min. The overall HI-6 impact on organism is discussed.