Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Am Soc Mass Spectrom ; 30(12): 2580-2583, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31724102

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a biophysical technique well suited to the characterization of protein dynamics and protein-ligand interactions. In order to accurately define the rate of exchange, HDX experiments require the repeated measure of deuterium incorporation into the target protein across a range of time points. Accordingly, the HDX-MS experiment is well suited to automation, and a number of automated systems for HDX-MS have been developed. The most widely utilized platforms all operate an integrated design, where robotic liquid handling is interfaced directly with a mass spectrometer. With integrated designs, the exchange samples are prepared and injected into the LC-MS following a "real-time" serial workflow. Here we describe a new HDX-MS platform that is comprised of two complementary pieces of automation that disconnect the sample preparation from the LC-MS analysis. For preparation, a plate-based automation system is used to prepare samples in parallel, followed by immediate freezing and storage. A second piece of automation has been constructed to perform the thawing and LC-MS analysis of frozen samples in a serial mode and has been optimized to maximize the duty cycle of the mass spectrometer. The decoupled configuration described here reduces experiment time, significantly improves capacity, and improves the flexibility of the platform when compared with a fully integrated system.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Descoberta de Drogas/economia , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Desenho de Equipamento , Análise de Injeção de Fluxo/economia , Análise de Injeção de Fluxo/instrumentação , Análise de Injeção de Fluxo/métodos , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério/economia , Espectrometria de Massa com Troca Hidrogênio-Deutério/instrumentação , Ligantes , Proteínas/química
2.
J Phys Chem B ; 121(15): 3493-3501, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27807976

RESUMO

Characterization of interactions between proteins and other molecules is crucial for understanding the mechanisms of action of biological systems and, thus, drug discovery. An increasingly useful approach to mapping these interactions is measurement of hydrogen/deuterium exchange (HDX) using mass spectrometry (HDX-MS), which measures the time-resolved deuterium incorporation of peptides obtained by enzymatic digestion of the protein. Comparison of exchange rates between apo- and ligand-bound conditions results in a mapping of the differential HDX (ΔHDX) of the ligand. Residue-level analysis of these data, however, must account for experimental error, sparseness, and ambiguity due to overlapping peptides. Here, we propose a Bayesian method consisting of a forward model, noise model, prior probabilities, and a Monte Carlo sampling scheme. This method exploits a residue-resolved exponential rate model of HDX-MS data obtained from all peptides simultaneously, and explicitly models experimental error. The result is the best possible estimate of ΔHDX magnitude and significance for each residue given the data. We demonstrate the method by revealing richer structural interpretation of ΔHDX data on two nuclear receptors: vitamin D-receptor (VDR) and retinoic acid receptor gamma (RORγ). The method is implemented in HDX Workbench and as a standalone module of the open source Integrative Modeling Platform.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massas , Proteínas/química , Teorema de Bayes , Ligantes , Simulação de Dinâmica Molecular , Método de Monte Carlo
4.
Anal Bioanal Chem ; 378(4): 977-86, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14634706

RESUMO

The spirolides are a family of marine biotoxins derived from the dinoflagellate Alexandrium ostenfeldii, recently isolated from contaminated shellfish and characterized. A crude phytoplankton extract has been extensively studied for mass spectrometric determination and characterization of several known spirolides and previously unreported compounds. The complex sample was initially analyzed by full-scan mass spectrometry in an ion-trap instrument, enabling identification of several components. Subsequent analysis by selected-ion monitoring in a triple-quadrupole instrument resulted in the confirmation of the identities of the compounds detected in the ion trap. Purification of the crude extract was performed using an automated mass-based fractionation system, yielding several fractions with different relative contributions of the spirolide components. Collision-induced dissociation (CID) in the triple-quadrupole instrument produced significant fragment ions for all identified species. Selective enrichment of some minor compounds in certain fractions enabled excellent CID spectra to be generated; this had previously been impossible, because of interferences from the major toxins present. Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry was then performed for accurate determination of the masses of MH+ ions of all the species present in the sample. Additionally, infrared multiphoton dissociation in the FTICR instrument generated elemental formulae for product ions, including those formed in the previous collisional activation experiments. Collection of these results and the fragmentation scheme proposed for the main component of the extract, 13-desmethyl spirolide C, from part I of this study, enabled elucidation of the structures of some uncharacterized spirolides and some biogenetically related compounds present at previously unreported masses.


Assuntos
Toxinas Marinhas/análise , Toxinas Marinhas/química , Fitoplâncton/química , Compostos de Espiro/análise , Compostos de Espiro/química , Animais , Dinoflagellida/química , Toxinas Marinhas/metabolismo , Espectrometria de Massas/métodos , Estrutura Molecular , Compostos de Espiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA