Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Microb Cell Fact ; 17(1): 17, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402276

RESUMO

BACKGROUND: Chimeric virus-like particles (VLP) allow the display of foreign antigens on their surface and have proved valuable in the development of safe subunit vaccines or drug delivery. However, finding an inexpensive production system and a VLP scaffold that allows stable incorporation of diverse, large foreign antigens are major challenges in this field. RESULTS: In this study, a versatile and cost-effective platform for chimeric VLP development was established. The membrane integral small surface protein (dS) of the duck hepatitis B virus was chosen as VLP scaffold and the industrially applied and safe yeast Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) as the heterologous expression host. Eight different, large molecular weight antigens of up to 412 amino acids derived from four animal-infecting viruses were genetically fused to the dS and recombinant production strains were isolated. In all cases, the fusion protein was well expressed and upon co-production with dS, chimeric VLP containing both proteins could be generated. Purification was accomplished by a downstream process adapted from the production of a recombinant hepatitis B VLP vaccine. Chimeric VLP were up to 95% pure on protein level and contained up to 33% fusion protein. Immunological data supported surface exposure of the foreign antigens on the native VLP. Approximately 40 mg of chimeric VLP per 100 g dry cell weight could be isolated. This is highly comparable to values reported for the optimized production of human hepatitis B VLP. Purified chimeric VLP were shown to be essentially stable for 6 months at 4 °C. CONCLUSIONS: The dS-based VLP scaffold tolerates the incorporation of a variety of large molecular weight foreign protein sequences. It is applicable for the display of highly immunogenic antigens originating from a variety of pathogens. The yeast-based production system allows cost-effective production that is not limited to small-scale fundamental research. Thus, the dS-based VLP platform is highly efficient for antigen presentation and should be considered in the development of future vaccines.


Assuntos
Apresentação de Antígeno , Pichia/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Animais , Patos , Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B do Pato/imunologia , Humanos , Pichia/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Vacinas Sintéticas/economia , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/análise , Vacinas de Partículas Semelhantes a Vírus/genética
2.
Proc Natl Acad Sci U S A ; 114(13): 3515-3520, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289193

RESUMO

Artemisinin-resistant falciparum malaria, defined by a slow-clearance phenotype and the presence of kelch13 mutants, has emerged in the Greater Mekong Subregion. Naturally acquired immunity to malaria clears parasites independent of antimalarial drugs. We hypothesized that between- and within-population variations in host immunity influence parasite clearance after artemisinin treatment and the interpretation of emerging artemisinin resistance. Antibodies specific to 12 Plasmodium falciparum sporozoite and blood-stage antigens were determined in 959 patients (from 11 sites in Southeast Asia) participating in a multinational cohort study assessing parasite clearance half-life (PCt1/2) after artesunate treatment and kelch13 mutations. Linear mixed-effects modeling of pooled individual patient data assessed the association between antibody responses and PCt1/2.P. falciparum antibodies were lowest in areas where the prevalence of kelch13 mutations and slow PCt1/2 were highest [Spearman ρ = -0.90 (95% confidence interval, -0.97, -0.65), and Spearman ρ = -0.94 (95% confidence interval, -0.98, -0.77), respectively]. P. falciparum antibodies were associated with faster PCt1/2 (mean difference in PCt1/2 according to seropositivity, -0.16 to -0.65 h, depending on antigen); antibodies have a greater effect on the clearance of kelch13 mutant compared with wild-type parasites (mean difference in PCt1/2 according to seropositivity, -0.22 to -0.61 h faster in kelch13 mutants compared with wild-type parasites). Naturally acquired immunity accelerates the clearance of artemisinin-resistant parasites in patients with falciparum malaria and may confound the current working definition of artemisinin resistance. Immunity may also play an important role in the emergence and transmission potential of artemisinin-resistant parasites.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Adulto , Idoso , Ásia , Criança , Pré-Escolar , Estudos de Coortes , Resistência a Medicamentos , Feminino , Humanos , Lactente , Malária Falciparum/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Fenótipo , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA