Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(33): 18247-18255, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34036748

RESUMO

Dendrite growth and by-products in Zn metal aqueous batteries have impeded their development as promising energy storage devices. We utilize a low-cost additive, glucose, to modulate the typical ZnSO4 electrolyte system for improving reversible plating/stripping on Zn anode for high-performance Zn ion batteries (ZIBs). Combing experimental characterizations and theoretical calculations, we show that the glucose in ZnSO4 aqueous environment can simultaneously modulate solvation structure of Zn2+ and Zn anode-electrolyte interface. The electrolyte engineering can alternate one H2 O molecule from the primary Zn2+ -6H2 O solvation shell and restraining side reactions due to the decomposition of active water. Concomitantly, glucose molecules are inclined to absorb on the surface of Zn anode, suppressing the random growth of Zn dendrite. As a proof of concept, a symmetric cell and Zn-MnO2 full cell with glucose electrolyte achieve boosted stability than that with pure ZnSO4 electrolyte.

2.
Angew Chem Int Ed Engl ; 60(13): 7366-7375, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33440043

RESUMO

Antisolvent addition has been widely studied in crystallization in the pharmaceutical industries by breaking the solvation balance of the original solution. Here we report a similar antisolvent strategy to boost Zn reversibility via regulation of the electrolyte on a molecular level. By adding for example methanol into ZnSO4 electrolyte, the free water and coordinated water in Zn2+ solvation sheath gradually interact with the antisolvent, which minimizes water activity and weakens Zn2+ solvation. Concomitantly, dendrite-free Zn deposition occurs via change in the deposition orientation, as evidenced by in situ optical microscopy. Zn reversibility is significantly boosted in antisolvent electrolyte of 50 % methanol by volume (Anti-M-50 %) even under harsh environments of -20 °C and 60 °C. Additionally, the suppressed side reactions and dendrite-free Zn plating/stripping in Anti-M-50 % electrolyte significantly enhance performance of Zn/polyaniline coin and pouch cells. We demonstrate this low-cost strategy can be readily generalized to other solvents, indicating its practical universality. Results will be of immediate interest and benefit to a range of researchers in electrochemistry and energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA