Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomed Phys Eng Express ; 10(4)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861949

RESUMO

Laminated barriers incorporating metal sheets provide effective protection for space-restricted radiotherapy centers. This study aimed to assess photoneutron contamination in smaller vaults protected by different compositions of multilayer barriers during simulated pelvic radiotherapy with 18 MV photon beams. Monte Carlo Simulations of 18 MV LINAC (Varian 2100 C/D) and Medical Internal Radiation Dose (MIRD) phantom were used to assess photoneutron contamination within reconstructed vaults incorporating different combinations of metal sheet and borated polyethylene (BPE) during pelvic radiotherapy. The findings highlight a 3.27 and 2.91 times increase in ambient neutron doseHn*(10) along the maze of reconstructed vaults that use lead and steel sheets, respectively, compared to concrete. TheHn*(10) outside the treatment room increased after incorporating a metal sheet, but it remained within the permissible limit of 20µSv/week for uncontrolled areas adjacent to the LINAC bunker, even with a workload of 1000Gy/week. Neutron equivalent doses in the patient's organs ranged from 0.22 to 0.96 mSv Gy-1. There is no notable distinction in the organ's neutron equivalent dose, fatal cancer risk, secondary radiation-induced cancer risk, and cancer mortality for various laminated barrier compositions. Furthermore, the use of metal sheets for vault wall reconstruction keeps the variation in cancer risk induced by photoneutrons below 6%, while risks of fatal cancer and cancer mortality vary less than 11%. While the metal portion of the laminated barrier raises the neutron dose, the addition of a BPE plate reduces concerns of increased effective dose and secondary malignancy risk.


Assuntos
Método de Monte Carlo , Nêutrons , Imagens de Fantasmas , Dosagem Radioterapêutica , Humanos , Fótons/uso terapêutico , Aceleradores de Partículas , Simulação por Computador , Polietileno/química , Proteção Radiológica/métodos , Doses de Radiação , Radioterapia/métodos
2.
Sci Rep ; 14(1): 4510, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402259

RESUMO

Grid therapy recently has been picking momentum due to favorable outcomes in bulky tumors. This is being termed as Spatially Fractionated Radiation Therapy (SFRT) and lattice therapy. SFRT can be performed with specially designed blocks made with brass or cerrobend with repeated holes or using multi-leaf collimators where dosimetry is uncertain. The dosimetric challenge in grid therapy is the mystery behind the lower percentage depth dose (PDD) in grid fields. The knowledge about the beam quality, indexed by TPR20/10 (Tissue Phantom Ratio), is also necessary for absolute dosimetry of grid fields. Since the grid may change the quality of the primary photons, a new [Formula: see text] should be evaluated for absolute dosimetry of grid fields. A Monte Carlo (MC) approach is provided to resolving the dosimetric issues. Using 6 MV beam from a linear accelerator, MC simulation was performed using MCNPX code. Additionally, a commercial grid therapy device was used to simulate the grid fields. Beam parameters were validated with MC model for output factor, depth of maximum dose, PDDs, dose profiles, and TPR20/10. The electron and photon spectra were also compared between open and grid fields. The dmax is the same for open and grid fields. The PDD with grid is lower (~ 10%) than the open field. The difference in TPR20/10 of open and grid fields is observable (~ 5%). Accordingly, TPR20/10 is still a good index for the beam quality in grid fields and consequently choose the correct [Formula: see text] in measurements. The output factors for grid fields are 0.2 lower compared to open fields. The lower depth dose with grid therapy is due to lower depth fluence with scatter radiation but it does not impact the dosimetry as the calibration parameters are insensitive to the effective beam energies. Thus, standard dosimetry in open beam based on international protocol could be used.


Assuntos
Fótons , Radiometria , Radiometria/métodos , Fótons/uso terapêutico , Elétrons , Imagens de Fantasmas , Método de Monte Carlo , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
PLoS One ; 18(1): e0280433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36638131

RESUMO

Neutron contamination in radiation therapy is of concern in treatment with high-energy photons (> 10 MV). With the development of new radiotherapy modalities such as spatially fractionated grid radiation therapy (SFGRT) or briefly grid radiotherapy, more studies are required to evaluate the risks associated with neutron contamination. In 15 MV SFGRT, high-Z materials such as lead and cerrobend are used as the block on the tray of linear accelerator (linac) which can probably increase the photoneutron production. On the other hand, the high-dose fractions (10-20 Gy) used in SFGRT can induce high neutron contamination. The current study was devoted to addressing these concerns via compression of neutron fluence (Φn) and ambient dose equivalent ([Formula: see text]) at the patient table and inside the maze between SFGRT and conventional fractionated radiation therapy (CFRT). The main components of the 15 MV Siemens Primus equipped with different grids and located inside a typical radiotherapy bunker were simulated by the MCNPX® Monte Carlo code. Evidence showed that the material used for grid construction does not significantly increase neutron contamination inside the maze. However, at the end of the maze, neutron contamination in SFGRT is significantly higher than in CFRT. In this regard, a delay time of 15 minutes after SFGRT is recommended for all radiotherapy staff before entering the maze. It can be also concluded that [Formula: see text] at the patient table is at least 10 times more pronounced than inside the maze. Therefore, the patient is more at risk of neutrons compared to the staff. The [Formula: see text] at the isocenter in SFGRT with grids made of lead and cerrobend was nearly equal to CFRT. Nevertheless, it was dramatically lower than in CFRT by 30% if the brass grid is used. Accordingly, SFGRT with the brass grid is recommended, from radiation protection aspects.


Assuntos
Fótons , Proteção Radiológica , Humanos , Aceleradores de Partículas , Nêutrons , Método de Monte Carlo , Doses de Radiação
4.
Appl Radiat Isot ; 174: 109776, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34082185

RESUMO

Therapeutic advantages of Grid therapy have been demonstrated in several theoretical studies using the standard linear-quadratic (LQ) model. However, the suitability of the LQ model when describing cell killing at highly modulated radiation fields has been questioned. In this study, we have applied an extended LQ model to recalculate therapeutic parameters of Grid therapy. This study shows that incorporating the bystander effects in the radiobiological models would significantly change the theoretical predictions and conclusion of Grid therapy, especially at high dose gradient fields.


Assuntos
Neoplasias da Mama/radioterapia , Modelos Lineares , Radiobiologia , Feminino , Humanos , Método de Monte Carlo , Radioterapia/métodos
5.
J Med Signals Sens ; 10(2): 113-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676447

RESUMO

BACKGROUND: Nowadays, the use of radiopharmaceuticals in medicine is unavoidable. Depending on the distribution of the radiopharmaceutical in the cells, the nucleus absorbed dose changes by the variations in their geometry size. Therefore, this study aims to investigate the S-value by the variation of nucleus size using Geant4 toolkit. METHODS: Two spherical cells with a variety of nucleus size have been considered as the cancerous cell. Monoenergetic electrons ranging from 5 to 300 keV are distributed uniformly. The S-value for four target-source components (including Nucleus←Cytoplasm, Nucleus←Cell surface, Nucleus←Nucleus, and Nucleus←Nucleus surface) is computed and plotted. Then, the obtained data are compared with analytical Medical Internal Radiation Dose (MIRD) data. RESULTS: In Nucleus←Cytoplasm compartment for electrons below 10 keV, obtained S-values show a slight decrease for the nucleus in the radii of around half of the cell radius and then S-values increase with the increase in the nucleus radii. In the S-value of Nucleus←Cell surface, for all electron energy levels, a slight decrease observed with the increase of nucleus radii. For Nucleus←Nucleus and Nucleus←Nucleus surface cases, with an increase in the size of the cell nucleus, a sharp reduction in the S-values is detected. CONCLUSION: It can be concluded that for the beta emitters with low-energy radiation (<40 keV), the S-value is heavily dependent on the nucleus size which may affect the treatment of small tumors. While for the beta emitters with higher-energy radiation (>100 keV), the size of the nucleus is not very noticeable in the induced S-value.

6.
J Med Signals Sens ; 8(3): 175-183, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181966

RESUMO

BACKGROUND: In the past, GRID therapy was used as a treatment modality for the treatment of bulky and deeply seated tumors with orthovoltage beams. Now and with the introduction of megavoltage beams to radiotherapy, some of the radiotherapy institutes use GRID therapy with megavoltage photons for the palliative treatment of bulky tumors. Since GRID can be a barrier for weakening the photoneutrons produced in the head of medical linear accelerators (LINAC), as well as a secondary source for producing photoneutrons, therefore, in terms of radiation protection, it is important to evaluate the GRID effect on photoneutron dose to the patients. METHODS: In this study, using the Monte Carlo code MCNPX, a full model of a LINAC was simulated and verified. The neutron source strength of the LINAC (Q), the distributions of flux (φ), and ambient dose equivalent (H*[10]) of neutrons were calculated on the treatment table in both cases of with/without the GRID. Finally, absorbed dose and dose equivalent of neutrons in some of the tissues/organs of MIRD phantom were computed with/without the GRID. RESULTS: Our results indicate that the GRID increases the production of the photoneutrons in the LINAC head only by 0.3%. The calculations in the MIRD phantom show that neutron dose in the organs/tissues covered by the GRID is on average by 48% lower than conventional radiotherapy. In addition, in the uncovered organs (by the GRID), this amount is reduced to 25%. CONCLUSION: Based on the findings of this study, in GRID therapy technique compared to conventional radiotherapy, the neutron dose in the tissues/organs of the body is dramatically reduced. Therefore, there will be no concern about the GRID effect on the increase of unwanted neutron dose, and consequently the risk of secondary cancer.

7.
J Appl Clin Med Phys ; 14(6): 4424, 2013 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-24257286

RESUMO

Nowadays, in most radiotherapy departments, the commercial treatment planning systems (TPS) used to calculate dose distributions needs to be verified; therefore, quick, easy-to-use, and low-cost dose distribution algorithms are desirable to test and verify the performance of the TPS. In this paper, we put forth an analytical method to calculate the phantom scatter contribution and depth dose on the central axis based on the equivalent square concept. Then, this method was generalized to calculate the profiles at any depth and for several field shapes - regular or irregular fields - under symmetry and asymmetry photon beam conditions. Varian 2100 C/D and Siemens Primus Plus linacs with 6 and 18 MV photon beam were used for irradiations. Percentage depth doses (PDDs) were measured for a large number of square fields for both energies and for 45° wedge, which were employed to obtain the profiles in any depth. To assess the accuracy of the calculated profiles, several profile measurements were carried out for some treatment fields. The calculated and measured profiles were compared by gamma-index calculation. All γ-index calculations were based on a 3% dose criterion and a 3 mm dose-to-agreement (DTA) acceptance criterion. The γ values were less than 1 at most points. However, the maximum γ observed was about 1.10 in the penumbra region in most fields and in the central area for the asymmetric fields. This analytical approach provides a generally quick and fairly accurate algorithm to calculate dose distribution for some treatment fields in conventional radiotherapy.


Assuntos
Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador , Água , Algoritmos , Simulação por Computador , Humanos , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA