Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743291

RESUMO

Intermittent theta burst (iTBS) powered by direct current stimulation (DCS) can safely be applied transcranially to induce neuroplasticity in the human and animal brain cortex. tDCS-iTBS is a special waveform that is used by very few studies, and its safety needs to be confirmed. Therefore, we aimed to evaluate the safety of tDCS-iTBS in an animal model after brain stimulations for 1 h and 4 weeks. Thirty-one Sprague Dawley rats were divided into two groups: (1) short-term stimulation for 1 h/session (sham, low, and high) and (2) long-term for 30 min, 3 sessions/week for 4 weeks (sham and high). The anodal stimulation applied over the primary motor cortex ranged from 2.5 to 4.5 mA/cm2. The brain biomarkers and scalp tissues were assessed using ELISA and histological analysis (H&E staining) after stimulations. The caspase-3 activity, cortical myelin basic protein (MBP) expression, and cortical interleukin (IL-6) levels increased slightly in both groups compared to sham. The serum MBP, cortical neuron-specific enolase (NSE), and serum IL-6 slightly changed from sham after stimulations. There was no obvious edema or cell necrosis seen in cortical histology after the intervention. The short- and long-term stimulations did not induce significant adverse effects on brain and scalp tissues upon assessing biomarkers and conducting histological analysis.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Animais , Potencial Evocado Motor/fisiologia , Interleucina-6 , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA