Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 262: 114348, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32182536

RESUMO

Phosphorus (P) fertilizer is widely used to increase wheat yield. However, it remains unclear whether prolonged intake of wheat grain that received long-term P application may promote human health risks by influencing heavy metal(loid)s (HMs) accumulation. A 10-year field experiment was conducted to evaluate the effects of continuous P application (0, 25, 50, 100, 200, and 400 kg P ha-1) on human health risks of HMs, including zinc (Zn), copper (Cu), cadmium (Cd), lead (Pb), arsenic (As), nickel (Ni), and chromium (Cr), by ingesting wheat grain. The results showed that P application facilitated Zn, Pb, Cd, and As accumulation in the topsoil. The Zn, Cu, Pb, and Ni concentrations in grain were decreased, while Cd and As were increased by P application. All HMs concentrations of both soil and grain were in the ranges of corresponding safety thresholds at different P levels. The accumulation abilities of Zn, Cu, Pb, and Ni from soil and straw to grain were suppressed by P addition while of As was enhanced. There was no significant difference in the hazard index (HI) of the investigated HMs in all treatments except 25 kg ha-1. The threshold cancer risk (TCR) associated with As and Cd was enhanced, while that of Pb was alleviated as P application increased. Behaviors of Cr from soil to wheat and to humans were not affected by P application. Phosphorus application at a rate of 50 kg ha-1 decreased total non-cancer and cancer risks by 15% and 21%, respectively, for both children and adults, compared to the highest value. In conclusion, long-term optimal application of 50 kg P ha-1 to wheat did not result in additional adverse effects on the total non-carcinogenic or carcinogenic risk caused by the studied HMs to humans through the ingestion of wheat grain.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Adulto , Criança , China , Monitoramento Ambiental , Fertilizantes , Humanos , Fósforo , Medição de Risco , Solo , Triticum
2.
Environ Pollut ; 257: 113581, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31753641

RESUMO

Soil application of Zn fertilizer is an effective approach to improve yield and Zn accumulation in wheat grain. However, it remains unclear whether repeated Zn application can result in high accumulation of heavy metals (HMs) in soils and grains and thus represents a potential risk for human consumption. This study aimed to evaluate the health risk assessment of HMs in a wheat production system which had continuously received 8 years of Zn application at varying rates (0, 2.3, 5.7, 11.4, 22.7, 34.1 kg Zn ha-1). The results showed that Zn application significantly increased the soil total Zn concentration without affecting concentrations of As, Pb, Cd, Cu and Cr. Across Zn rates, Zn application increased grain concentrations of Zn, Pb and Cd by 75%, 51% and 14%, respectively, and reduced grain As concentration by 14%. The human health risk assessment revealed that the threshold hazard quotients for the individual HM were below 1, independent of Zn rates. The hazard index (HI) values at Zn rates of 11.4, 22.7 and 34.1 kg Zn ha-1 were significantly greater than that at null Zn treatment. Furthermore, exposures to As, Cu and Zn accounted for 97% of HI at all Zn rates. Analysis of the threshold cancer risk with Pb and As showed that ingestion of wheat grain even from highest Zn application rate wouldn't bring the lifetime carcinogenic risk. In contrast, long-term Zn application significantly reduced the carcinogenic risk of As by 9.7-26.5%. In conclusion, repeated soil applications of Zn at optimal rate (5.7 kg Zn ha-1) didn't cause health risk for Zn, Cu, Cd, Pb, Cr, and As, while improving productivity and grain Zn concentration of wheat to meet human recruitment. Our study highlights the importance of appropriate Zn fertilizer management in improving grain quality while reducing HMs risks from human consumption.


Assuntos
Exposição Dietética , Monitoramento Ambiental , Fertilizantes , Metais Pesados/análise , Poluentes do Solo , Triticum/química , Zinco , Cádmio , China , Humanos , Chumbo , Medição de Risco , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA