Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Environ Manage ; 353: 120198, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308989

RESUMO

The Aral Sea Basin in Central Asia faces significant challenges in improving water utilization and treatment because of frequent transboundary river water disputes and shortages of water resources. However, the traditional water resource utilization efficiency (WRUE) assessment models generally have the defect of over-validating evaluation results. To solve this problem, this study used the Coefficient of Variation method to constrain the self-contained weights in the traditional Data Envelopment Analysis (DEA) to construct an improved CV-DEA model, and assessed the WRUE of the Aral Sea Basin countries during 2000-2018 and compared the WRUE with that of the countries in the Mekong River Basin and Northeast Asia, then explored the factors influencing water utilization. The conclusions were drawn: since 1960, the runoff from the upper Amu Darya and Syr Darya rivers increased significantly, while the runoff from the lower Amu Darya River into the Aral Sea declined. Meanwhile, the water area of the Aral Sea shrank from 2.56 × 104 km2 to 0.70 × 104 km2 in 2000-2018, with the Northern Aral Sea remaining stable while the southern part shrinking sharply. The WRUE of the Aral Sea Basin (0.599, on average) was higher than that of the Mekong River Basin (0.547) and lower than that of Northeast Asia (0.885). Kazakhstan and Uzbekistan had the highest WRUE of 0.819 and 0.685 respectively, and the WRUE in both two countries improved from 2000 to 2018. Tajikistan (0.495) and Turkmenistan (0.402) experienced decreases in WRUEs. The high input redundancy of agricultural water consumption was the main driving force affecting WRUE in the basin.


Assuntos
Água Doce , Recursos Hídricos , Cazaquistão , Uzbequistão , Rios , Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-36834302

RESUMO

Drylands, which account for 41% of Earth's land surface and are home to more than two billion people, play an important role in the global carbon balance. This study analyzes the spatio-temporal patterns of vegetation carbon sinks and sources in the arid region of northwest China (NWC), using the net ecosystem production (NEP) through the Carnegie-Ames-Stanford approach (CASA). It quantitatively evaluates regional ecological security over a 20-year period (2000-2020) via a remote sensing ecological index (RSEI) and other ecological indexes, such as the Normalized Difference Vegetation Index (NDVI), fraction of vegetation cover (FVC), net primary productivity (NPP), and land use. The results show that the annual average carbon capacity of vegetation in NWC changed from carbon sources to carbon sinks, and the vegetation NEP increased at a rate of 1.98 gC m-2 yr-1 from 2000 to 2020. Spatially, the annual NEP in northern Xinjiang (NXJ), southern Xinjiang (SXJ) and Hexi Corridor (HX) increased at even faster rates of 2.11, 2.22, and 1.98 gC m-2 yr-1, respectively. Obvious geographically heterogeneous distributions and changes occurred in vegetation carbon sinks and carbon sources. Some 65.78% of the vegetation areas in NWC were carbon sources during 2000-2020, which were concentrated in the plains, and SXJ, the majority carbon sink areas are located in the mountains. The vegetation NEP in the plains exhibited a positive trend (1.21 gC m-2 yr-1) during 2000-2020, but this speed has slowed since 2010. The vegetation NEP in the mountain exhibited only intermittent changes (2.55 gC m-2 yr-1) during 2000-2020; it exhibited a negative trend during 2000-2010, but this trend has reversed strongly since 2010. The entire ecological security of NWC was enhanced during the study period. Specifically, the RSEI increased from 0.34 to 0.49, the NDVI increased by 0.03 (17.65%), the FVC expanded by 19.56%, and the NPP increased by 27.44%. Recent positive trends in NDVI, FVC and NPP have enhanced the capacity of vegetation carbon sinks, and improved the eco-environment of NWC. The scientific outcomes of this study are of great importance for maintaining ecological stability and sustainable economic development along China's Silk Road Economic Belt.


Assuntos
Sequestro de Carbono , Ecossistema , Humanos , China , Telemetria , Carbono , Mudança Climática
3.
Sci Rep ; 12(1): 17258, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241758

RESUMO

Agricultural irrigation consumes most of the fresh water in the China-Pakistan Economic Corridor (CPEC), directly affecting water resource management and allocation. Irrigation water demand is a key component of regional water resources management. We analyzed spatiotemporal variation in irrigation water requirement, irrigation demand index (IDI), and the proposed regional optimization of irrigation water use based on the Bayesian probability network. Results showed that: (1) The IDI in the study area increased slightly (trend slope = 0.028 a-1) as the effective precipitation increased by 63% during this period, and total irrigation water requirement (IR) decreased from 277.61 km3 in 2000 to 240 km3 in 2015. (2) Cotton had the highest crop IDI, followed by maize and wheat. (3) According to the comprehensive scenario analysis, improving the crop planting structure (by moderately increasing the planting proportion of maize in the CPEC) is conducive to improving regional water and food security by enhancing the grain yield (+ 9%), reducing the malnourished proportion of the population (low state + 7.2%), and bolstering water-saving irrigation technologies in Pakistan as well as water conveyance systems in Pakistan. Our results form an important baseline in determining the way forward on sustainable water resource utilization management in the CPEC.


Assuntos
Irrigação Agrícola , Agricultura , Irrigação Agrícola/métodos , Agricultura/métodos , Teorema de Bayes , China , Paquistão , Água , Zea mays
4.
PLoS One ; 17(1): e0262092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061721

RESUMO

Environmental process assessment based on the environmental depletion index (EDI) is an important part of the long-term monitoring and early warning mechanism of China's resources and environmental carrying capacity. The EDI aims to realize the unified environmental impact assessment of economic and environmental systems through the ratio relationship between economic growth and pollutant emission growth. However, in terms of pollutant emissions, the EDI ignores the environmental capacity (EC), which means that the effectiveness and objectivity of environmental impact assessment must be verified. In this study, with Xinjiang as an example and based on the EDI, Sulfur dioxide (SO2), Nitrogen oxide (NOx), Chemical oxygen demand (COD) and Ammonia nitrogen (NH3-N) were selected for calculation and assessment both without and with consideration of EC and for discussion of the suitability of the environmental depletion method for resources and environmental carrying capacity. The results indicated that ① the percentages of SO2, NOx, COD, NH3-N and CEDI in counties and cities that tend to be poor and lack EC were 32.98%, 29.79%, 30.85%, 28.72% and 38.30%, respectively, while the percentages in counties and cities with EC were 10.64%, 3.19%, 13.83%, 8.51% and 10.64%, respectively. ② When EC was included, the number of counties and cities where changes in SO2, NOx, COD, NH3-N and CEDI tended to be "poor → good" were 23, 26, 17, 21 and 28, respectively, and the number of counties and cities where such changes tended to be "good → poor" were 2, 1, 1, 2 and 2, respectively. ③ EC inclusion corrected overestimated or underestimated EDI results, making the evaluation results more objective and reasonable. This understanding provides a scientific reference for the coordinated development of the regional economy and environment in Xinjiang and worldwide.


Assuntos
Monitoramento Ambiental , Amônia/análise , Análise da Demanda Biológica de Oxigênio , China , Cidades , Óxidos de Nitrogênio/análise , Dióxido de Enxofre/análise
5.
J Environ Manage ; 305: 114394, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995939

RESUMO

As most of the runoff resulting from snow-ice melt is related to climate change factors in the arid region of northwest China, the risk to water resource systems threatens the socio-economic and ecological environment and is becoming increasingly prevalent. Therefore, we explored the risks of water resource shortages for different periods (2010, 2020, and 2030) in the Aksu River basin (ARB) in the northwest arid region of China by reconstructing a risk model based on the framework proposed by the Intergovernmental Panel on Climate Change (IPCC) with an improved vulnerability (V) module and a more suitable hazard probability in the cost module. The major conclusions are as follows: (1) the simulation of the Community Land Model-Distributed Time Variant Gain Model (CLM-DTVGM) and the Vegetation Interface Processes model (VIP) was suitable for the eco-hydrological processes in the ARB under climate change (i.e., R2 ≥ 0.583; Nash coefficient ≥0.371; and relative mean standard ≤155.727 for CLM-DTVGM; R2 = 0.798 for VIP); (2) the vulnerability of the water resource system in the ARB was medium in 2010, and dropped to a medium-low to non-vulnerable level in 2020 before increasing in 2030 under different Representative Concentration Pathways (RCP) (RCP2.6, RCP4.5, and RCP8.5); and (3) there was a medium-low risk of water resource shortages in the ARB in 2010 (i.e., 0.246), and although the risk of water resource shortages decreased in 2020 due to the increasing water supply from mountainous areas, the risk predicted to increase significantly in 2030, to a medium-high risk level. This study is critical for accurately predicting and understanding the impact of climate change on water resource systems as well as on the drought risk in arid regions.


Assuntos
Mudança Climática , Recursos Hídricos , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , China , Medição de Risco , Rios
6.
Sci Total Environ ; 784: 147193, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33905922

RESUMO

A systematic understanding of the dynamics of surface water resources and terrestrial water storage (TWS) is extremely important for human survival in Central Asia (CA) and maintaining the balance of regional ecosystems. Although several remote sensing products have been used to map surface water, the spatial resolution of some of them (hundreds of meters) is not sufficient to identify small surface water bodies, with monitoring data only being available for a few years or less. Thus, long-term continuous monitoring of surface water dynamics has not yet been achieved. To address this, we used all available Landsat images and the adjacent-years interpolation method to describe the dynamics of surface water in CA with a 30-m spatial resolution during 1990-2019. Subsequently, based on the multiple stepwise regression model, the climatic changes and human activity drivers affecting the surface water were systematically assessed. The permanent surface water areas (PSWA) of downstream countries with water scarcity decreased over time. The PSWA of Kazakhstan continues to decline at a maximum rate of 1189 km2/a. Additionally, human activities represented by population and reservoir areas are the dominant drivers affecting surface water resources in CA. The relationship between TWS and PSWA in CA and the constraints on social and economic development provided by the available water resources are discussed. The findings demonstrate that more than one-third of the croplands in CA are suffering from declining SWAs and TWS. The water crisis in CA has intensified, and the spatial mismatch between water and land resources is expected to remain one of the biggest challenges for future social and economic development in CA. Our dataset and findings provide high-precision surface water dynamics data that could be valuable for mitigating the water crisis in CA and provide a current scientific reference for achieving the United Nations' Sustainable Development Goals.

7.
Environ Monit Assess ; 191(11): 704, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673801

RESUMO

In light of ongoing changes in how humans interact with the environment, it is of great importance to quantitatively assess the impact of land use and cover change (LUCC) on ecosystems. Using a variety of methods, we analyzed land-use patterns and ecosystem service values (ESV) in 1990, 2000, and 2010; normalized difference vegetation index (NDVI) from 1982 to 2010 in the arid region of Northwest China; and quantitatively assessed the effects of LUCC on changes in NDVI and ESV. The results indicate the following: (1) From 1990 to 2010, the rate of increase in the amount of cropland and urban land was highest at 19.13% and 18.25%, respectively, followed by the rate for water cover (5.10%) and forest land (3.55%), while grassland experienced a reduction of 2.25%. (2) From 1990 to 2010, the total ESV increased by 1.82%. Changes in the amount of water cover and cropland were responsible for an increase in ESV of 1.42% and 1.10%, respectively, while the change in the amount of grassland was responsible for a decrease of 1.09%. Based on this, it seems likely that climate variability is a substantial cause of change in ESV. (3) From 1982 to 2010, NDVI showed an overall increase, first increasing significantly between 1982 and 2002 and then decreasing somewhat from 2002 to 2010. From 1990 to 2010, the contribution rate of LUCC to change in total NDVI was 26.74%, indicating that the contribution rate of climate variability to NDVI change was up to 73.26%. Therefore, over those 20 years, climate warming and humidification had an important impact on the development of ecosystems in the arid region of Northwest China.


Assuntos
Conservação dos Recursos Naturais/tendências , Produtos Agrícolas/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Poaceae/crescimento & desenvolvimento , Urbanização/tendências , China , Mudança Climática , Ecossistema , Florestas , Humanos
8.
Sci Rep ; 8(1): 17413, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467367

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

9.
Sci Rep ; 8(1): 13051, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158578

RESUMO

Multiple studies have reported a shift in the trend of warm season rainfall over arid eastern-central Asia (AECA) around the turn of the new century, from increasing over the second half of the twentieth century to decreasing during the early years of the twenty-first. Here, a closer look based on multiple precipitation datasets reveals important regional disparities in these changes. Warm-season rainfall increased over both basin areas and mountain ranges during 1961-1998 due to enhanced moisture flux convergence associated with changes in the large-scale circulation and increases in atmospheric moisture content. Despite a significant decrease in warm-season precipitation over the high mountain ranges after the year 1998, warm season rainfall has remained large over low-lying basin areas. This discrepancy, which is also reflected in changes in river flow, soil moisture, and vegetation, primarily results from disparate responses to enhanced warming in the mountain and basin areas of AECA. In addition to changes in the prevailing circulation and moisture transport patterns, the decrease in precipitation over the mountains has occurred mainly because increases in local water vapor saturation capacity (which scales with temperature) have outpaced the available moisture supply, reducing relative humidity and suppressing precipitation. By contrast, rainfall over basin areas has been maintained by accelerated moisture recycling driven by rapid glacier retreat, snow melt, and irrigation expansion. This trend is unsustainable and is likely to reverse as these cryospheric buffers disappear, with potentially catastrophic implications for local agriculture and ecology.

10.
Sci Rep ; 7(1): 1316, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465559

RESUMO

While the method for estimating the Palmer Drought Severity Index (PDSI) is now more closely aligned to key water balance components, a comprehensive assessment for measuring long-term droughts that recognizes meteorological, agro-ecological and hydrological perspectives and their attributions is still lacking. Based on physical approaches linked to potential evapotranspiration (PET), the PDSI in 1965-2014 showed a mixture of drying (42% of the land area) and wetting (58% of the land area) that combined to give a slightly wetting trend (0.0036 per year). Despite the smaller overall trend, there is a switch to a drying trend over the past decade (-0.023 per year). We designed numerical experiments and found that PDSI trend responding to the dramatic increase in air temperature and slight change in precipitation. The variabilities of meteorological and agro-ecological droughts were broadly comparable to various PDSI drought index. Interestingly, the hydrological drought was not completely comparable to the PDSI, which indicates that runoff in arid and semi-arid regions was not generated primarily from precipitation. Instead, fraction of glacierized areas in catchments caused large variations in the observed runoff changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA