Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 171: 405-414, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28033571

RESUMO

The water quality security of the Three Gorges Reservoir during different operating periods has been a subject of recent concern. This study is the first to report the spatiotemporal variability of organotins (OTs) in surface water under dynamic water level conditions in the Three Gorges Reservoir Region (TGRR). TGRR surface water was collected during three monitoring campaigns to analyze butyltins (BTs) and phenyltins (PTs) using a gas chromatography-mass spectrometry system. Our results showed that TGRR surface water was polluted by BTs and PTs, with mono-OTs being the dominant species. A wide range of BTs and PTs concentrations was observed across the study area, but tributyltin (TBT) displayed extensive spatial distribution, and the highest concentrations consistently occurred in the downstream region of the TGRR study area, with a maximum of 393.35 ng Sn/L in Zigui (S27). The total OTs contamination level decreased over time. The diphenyltin concentration exhibited significant seasonal variation, while other OTs showed seasonal changes only during two monitoring campaigns, with the exception of dibutyltin. An ecological risk assessment indicated that both TBT and triphenyltin posed risks to aquatic organisms in TGRR surface water. We urgently recommend continuous monitoring and further measures to prevent and control OTs pollution in the TGRR.


Assuntos
Monitoramento Ambiental , Compostos Orgânicos de Estanho/análise , Compostos Orgânicos de Estanho/toxicidade , Rios/química , Análise Espaço-Temporal , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , China , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos de Estanho/química , Medição de Risco , Poluentes Químicos da Água/química
2.
Sci Total Environ ; 470-471: 618-30, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24176710

RESUMO

The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from "negative removal" to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg, with a few exceptions) also indicate that biodegradation/transformation was responsible for the removal of the target PhACs. Ecotoxicological assessment indicated that the environment concentrations of single compounds (including sulfadiazine, sulfamethoxazole, ofloxacin, azithromycin and erythromycin-H2O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological risk to algae. Therefore, further control of PhACs in effluent and sludge is required before their discharge and application to prevent their introduction into the environment.


Assuntos
Monitoramento Ambiental , Preparações Farmacêuticas/análise , Esgotos/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , China , Extração em Fase Sólida , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/toxicidade
3.
J Biotechnol ; 160(3-4): 229-35, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22387426

RESUMO

Protein-rich bloom algae biomass was employed as nitrogen source in fuel ethanol fermentation using high gravity sweet potato medium containing 210.0 g l(-1) glucose. In batch mode, the fermentation could not accomplish even in 120 h without any feeding of nitrogen source. While, the feeding of acid-hydrolyzed bloom algae powder (AHBAP) notably promoted fermentation process but untreated bloom algae powder (UBAP) was less effective than AHBAP. The fermentation times were reduced to 96, 72, and 72 h if 5.0, 10.0, and 20.0 g l(-1) AHBAP were added into medium, respectively, and the ethanol yields and productivities increased with increasing amount of feeding AHBAP. The continuous fermentations were performed in a three-stage reactor system. Final concentrations of ethanol up to 103.2 and 104.3 g l(-1) with 4.4 and 5.3 g l(-1) residual glucose were obtained using the previously mentioned medium feeding with 20.0 and 30.0 g l(-1) AHBAP, at dilution rate of 0.02 h(-1). Notably, only 78.5 g l(-1) ethanol and 41.6 g l(-1) residual glucose were obtained in the comparative test without any nitrogen source feeding. Amino acids analysis showed that approximately 67% of the protein in the algal biomass was hydrolyzed and released into the medium, serving as the available nitrogen nutrition for yeast growth and metabolism. Both batch and continuous fermentations showed similar fermentation parameters when 20.0 and 30.0 g l(-1) AHBAP were fed, indicating that the level of available nitrogen in the medium should be limited, and an algal nitrogen source feeding amount higher than 20.0 g l(-1) did not further improve the fermentation performance.


Assuntos
Biocombustíveis/microbiologia , Etanol/isolamento & purificação , Etanol/metabolismo , Eutrofização/fisiologia , Ipomoea batatas/microbiologia , Nitrogênio/metabolismo , Ipomoea batatas/química , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA