Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sensors (Basel) ; 21(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34450931

RESUMO

Video has become the most popular medium of communication over the past decade, with nearly 90 percent of the bandwidth on the Internet being used for video transmission. Thus, evaluating the quality of an acquired or compressed video has become increasingly important. The goal of video quality assessment (VQA) is to measure the quality of a video clip as perceived by a human observer. Since manually rating every video clip to evaluate quality is infeasible, researchers have attempted to develop various quantitative metrics that estimate the perceptual quality of video. In this paper, we propose a new region-based average video quality assessment (RAVA) technique extending image quality assessment (IQA) metrics. In our experiments, we extend two full-reference (FR) image quality metrics to measure the feasibility of the proposed RAVA technique. Results on three different datasets show that our RAVA method is practical in predicting objective video scores.


Assuntos
Algoritmos , Humanos
2.
Sensors (Basel) ; 19(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137825

RESUMO

Parkinson's disease (PD) is one of the leading neurological disorders in the world with an increasing incidence rate for the elderly. Freezing of Gait (FOG) is one of the most incapacitating symptoms for PD especially in the later stages of the disease. FOG is a short absence or reduction of ability to walk for PD patients which can cause fall, reduction in patients' quality of life, and even death. Existing FOG assessments by doctors are based on a patient's diaries and experts' manual video analysis which give subjective, inaccurate, and unreliable results. In the present research, an automatic FOG assessment system is designed for PD patients to provide objective information to neurologists about the FOG condition and the symptom's characteristics. The proposed FOG assessment system uses an RGB-D sensor based on Microsoft Kinect V2 for capturing data for 5 healthy subjects who are trained to imitate the FOG phenomenon. The proposed FOG assessment system is called "Kin-FOG". The analysis of foot joint trajectory of the motion captured by Kinect is used to find the FOG episodes. The evaluation of Kin-FOG is performed by two types of experiments, including: (1) simple walking (SW); and (2) walking with turning (WWT). Since the standing mode has features similar to a FOG episode, our Kin-FOG system proposes a method to distinguish between the FOG and standing episodes. Therefore, two general groups of experiments are conducted with standing state (WST) and without standing state (WOST). The gradient displacement of the angle between the foot and the ground is used as the feature for discriminating between FOG and standing modes. These experiments are conducted with different numbers of FOGs for getting reliable and general results. The Kin-FOG system reports the number of FOGs, their lengths, and the time slots when they occur. Experimental results demonstrate Kin-FOG has around 90% accuracy rate for FOG prediction in both experiments for different tasks (SW, WWT). The proposed Kin-FOG system can be used as a remote application at a patient's home or a rehabilitation clinic for sending a neurologist the required FOG information. The reliability and generality of the proposed system will be evaluated for bigger data sets of actual PD subjects.


Assuntos
Transtornos Neurológicos da Marcha/terapia , Movimento/fisiologia , Doença de Parkinson/terapia , Caminhada/fisiologia , Adulto , Algoritmos , Teorema de Bayes , Fenômenos Biomecânicos , Feminino , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Doença de Parkinson/fisiopatologia , Qualidade de Vida , Processamento de Sinais Assistido por Computador
3.
Environ Sci Technol ; 51(2): 855-862, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28009168

RESUMO

Gaseous oxidized mercury (GOM) measurement uncertainties undoubtedly impact the understanding of mercury biogeochemical cycling; however, there is a lack of consensus on the uncertainty magnitude. The numerical method presented in this study provides an alternative means of estimating the uncertainties of previous GOM measurements. Weekly GOM in ambient air was predicted from measured weekly mercury wet deposition using a scavenging ratio approach, and compared against field measurements of 2-4 hly GOM to estimate the measurement biases of the Tekran speciation instruments at 13 Atmospheric Mercury Network (AMNet) sites. Multiyear average GOM measurements were estimated to be biased low by more than a factor of 2 at six sites, between a factor of 1.5 and 1.8 at six other sites, and below a factor of 1.3 at one site. The differences between predicted and observed were significantly larger during summer than other seasons potentially because of higher ozone concentrations that may interfere with GOM sampling. The analysis data collected over six years at multiple sites suggests a systematic bias in GOM measurements, supporting the need for further investigation of measurement technologies and identifying the chemical composition of GOM.


Assuntos
Poluentes Atmosféricos , Mercúrio , Monitoramento Ambiental , Oxirredução , Incerteza
4.
J Med Syst ; 41(2): 24, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28000118

RESUMO

We introduce a smart sensor-based motion detection technique for objective measurement and assessment of surgical dexterity among users at different experience levels. The goal is to allow trainees to evaluate their performance based on a reference model shared through communication technology, e.g., the Internet, without the physical presence of an evaluating surgeon. While in the current implementation we used a Leap Motion Controller to obtain motion data for analysis, our technique can be applied to motion data captured by other smart sensors, e.g., OptiTrack. To differentiate motions captured from different participants, measurement and assessment in our approach are achieved using two strategies: (1) low level descriptive statistical analysis, and (2) Hidden Markov Model (HMM) classification. Based on our surgical knot tying task experiment, we can conclude that finger motions generated from users with different surgical dexterity, e.g., expert and novice performers, display differences in path length, number of movements and task completion time. In order to validate the discriminatory ability of HMM for classifying different movement patterns, a non-surgical task was included in our analysis. Experimental results demonstrate that our approach had 100 % accuracy in discriminating between expert and novice performances. Our proposed motion analysis technique applied to open surgical procedures is a promising step towards the development of objective computer-assisted assessment and training systems.


Assuntos
Competência Clínica , Instrução por Computador/métodos , Dedos , Movimento , Procedimentos Cirúrgicos Operatórios/educação , Instrução por Computador/instrumentação , Feedback Formativo , Humanos , Cadeias de Markov
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA